2A17 NO_3 B 2 E' - X 2 A $_2$ 遷移の SVL ケイ光スペクトル (広島市大 情報) A 福島 勝、石渡 孝

Dispersed Fluorescence Spectra of NO $_3~B~^2$ E' – $X~^2$ A $_2$ Transition (Hiroshima City Univ.) <u>Masaru Fukushima</u> and Takashi Ishiwata

【序】 NO_3 は基本的な窒素酸化物の 1 つであり、赤の可視領域に光吸収をもち、大気化学で重要なフリーラジカルとして知られている。このため、かなり以前より、光化学および分光学などの多くの分野で興味がもたれてきた。赤色領域の吸収は NO_3 の \tilde{B} 2 E' - \tilde{X} 2 A2' 遷移と帰属され、多くの研究がなされているが、振電バンドがブロードなため、 \tilde{B} 2 E' 状態の振動構造は、未だに、ほとんど解明されていない [1]。一方、 \tilde{X} 2 A2' 状態は、赤外高分解能分光からその振動構造の解析が進められ、分子構造が D_{3h} 対称性の平面構造であるなど、かなりの情報が得られている [1] が、未解決の問題も多い。本研究では NO_3 \tilde{B} 2 E' - \tilde{X} 2 A2' 遷移の単一振電準位(SVL; Single Vibronic Level)からの分散ケイ光スペクトルを測定し、その振動構造から \tilde{X} 2 A2' 状態の振電構造を検討した。

【実験】 NO_3 は Ar にシードした N_2O_5 の熱分解で生成させた。熱分解はノズルオリフィス直下の約 30 mm 長のセラミック管で行った。レーザー誘起ケイ光(LIF; Laser Induced Fluorescence)は熱分解管出口の下流、約 20 mm で励起し、その下流、約 10 mm で観測した。分散ケイ光スペクトルは、焦点距離 500 mm の分光器で測定した。

【結果】色素 DCM の領域で LIF 励起スペクトルを測定した。このエネルギー領域では、 測定したスペクトルは吸収スペクトルと良く対応している (DCM より高いエネルギー領域 では、ケイ光の量子収率が低下し、LIF 励起スペクトルは、測定し難くなる)。励起スペクト ルに現れた最も低エネルギー (15,103 cm⁻¹) にある振電バンドを基準 (以下、0+0 cm⁻¹ バンドと記す)とし、この 0+0 cm⁻¹ バンドと、これより 26、770、850、948 cm⁻¹ 高い振電バ ンド(以下、+26、+770、+850、+948 cm⁻¹ バンドと記す)の合わせて5つの振電バンドを 励起して、SVL 分散ケイ光スペクトルを測定した。スペクトルに現れた振動構造の特徴に ついて考察し、各バンドの上準位 (つまり、 $B^2 \to 1$ 状態の振動準位) に関する知見を得 た。その結果、(a) +26 cm⁻¹ バンドの上準位は 0+0 cm⁻¹ バンドのそれと同じ特徴をもつこ と、(b) +770 と +850 cm⁻¹ バンドの上準位は同じ特徴をもち、2 v4 準位(v4 の倍音) に 帰属される"可能性"があること、(c) +948 cm⁻¹ バンドは 1 ½ 準位(½ の基音)に帰属 されることなどを報告した [2]。さらに、0+0 と +770 cm⁻¹ バンド励起で得られた SVL ケイ 光スペクトルの振動構造を比較して、 X^2A_2 、状態の 1,492 cm $^{-1}$ 準位には ν_4 の寄与が 無いことを示した [3]。今回は、 $+948 \text{ cm}^{-1}$ バンドのスペクトルの振動構造の情報も加え、X 2A_2 ' 状態の ν_1 (全対称 a_1 振動モード)と ν_4 (非全対称 e' 振動モード)プログレッ ションなどの解析結果について報告する。

+940 cm⁻¹ のスペクトルの振動構造には ν_1 と ν_4 モードに顕著な特徴が観測された。 ν_1 モードの特徴は、(1) ほぼ 1,053 cm⁻¹ の間隔をもつ ν_1 プログレッションが現れる、(2) この ν_1 プログレッションの ν_1 3 の準位 (ν_1 の 3 倍音、3 ν_1) は 3,160 cm⁻¹ に現れ、 ν_1 モードの高い調和性を示している、これに対して (3) ν_1 = 2 の準位 (ν_1 の 2 倍音、2 ν_1) は 2,119 と 2,158 cm⁻¹ バンドに分裂している、という 3 つである (この特徴 (1) が発光スペクトルの測定に際し励起した +948 cm⁻¹ 準位を励起 \tilde{B}^2 E' 電子状態の ν_1 の基音に帰属した根拠の1つである [2])。2 ν_1 の 2 つの分裂した準位は、どちらも 2×1,053 = 2,106 cm⁻¹ より高いので、これら 2 つの準位に対し、2,106 cm⁻¹ の 2 ν_1 振動準位

と、この上下に近接する 2 つの a_1 '振動準位との Fermi 相互作用を考慮したモデルを仮定し、測定結果を解析した。その結果、1,950 と 2,111 cm⁻¹ の 2 つの準位(それぞれ α と β 準位と呼ぶ)を仮定し、2 ν_1 と β 準位(準位間 5 cm⁻¹)との相互作用を 10 cm⁻¹、これら 2 準位と α 準位(準位間 \sim 100 cm⁻¹)との相互作用をどちらも 80 cm⁻¹ としたモデルで、観測結果を 1.6 cm⁻¹ の精度で再現できた(解析 I)。観測スペクトルには 1,925 cm⁻¹ に比較的強いバンドも観測されており、上記 1,950 バンドをこれとしたモデル、つまり、相互作用を受けた準位が、1,925、2,119、2,158 cm⁻¹ の 3 つの準位としたモデルを考えると、1,985、2,106、2,111 cm⁻¹ の準位(それぞれ、 α 、2 ν_1 、 β 準位)の相互作用を 10 (α と 2 ν_1 準位間)、74 (2 ν_1 と β 準位間)、69 cm⁻¹ (α と β 準位間)として、観測結果を 0.08 cm⁻¹ の精度で再現できた(解析 II)。 α 準位は 5 ν_4 、 α * α

さらに、この ν_1 プログレッションの観測強度は、1 次元調和振動子モデル(ω_1 ' = 948、 ω_1 " = 1,053 cm⁻¹) での Franck-Condon factor の計算により、ほぼ再現できた。これは +948 cm⁻¹ 準位を B 2 E' 状態の ν_1 の基音とした先の帰属 [2] を支持している。

+948 cm⁻¹ のスペクトルの振動構造の最大の特徴は(4) ν_4 非対称振動モードのプログレッションが最も強く観測される、という点である。全対称振動準位を励起して、非全対称振動モードのプログレッションが現れるというのは、かなり奇妙な観測結果である。電子スペクトルに非全対称振電バンドが観測される現象は、一般に、別の非全対称電子状態との非全対称振動モードによる振電相互作用による、と理解されており、当初、この道筋で解釈を試みた。今回の状況では、 ν_4 振電バンドの出現には B^2 E' – X^2 A2' 遷移の電子遷移モーメントの全対称 a_1 '振動 ν_1 モード依存性が必要となる。このため、量子化学計算による確認(molpro を用いた vtz 基底関数での mr-ci 計算)を行った。しかし、その結果、電子遷移モーメントの ν_1 モード依存性は確認できたが、その依存性は ν_4 のプログレッションの出現を理解できるほど大きくない。特に ν_4 の基音バンドばかりでなく、 ν_4 がプログレッションとして現れる点が理解困難であった(振電準位の対称性の観点からも)。

 X^2A_2 'と A^2E " および B^2E ' 状態間には非全対称の a_2 " や e' 振動による振電相互作用が可能である。実際 A^2E " $= X^2A_2$ ' や B^2E " $= X^2A_2$ ' の電子スペクトルには ν_4 の関与した多くの振電バンドが観測されており [3,4]、 ν_4 モードによる振電相互作用の存在は間違いないと考えられる。さらに X^2A_2 ' 状態の ν_4 ポテンシャルは、正の非調和定数をもち、かなりフラットである、とされている。このため、 ν_4 プログレッションの出現は、これらの電子状態間の振電相互作用 (静的 Jahn-Teller 相互作用)により B^2E " 状態のポテンシャルが ν_4 モード方向に大きく歪んでおり (換言すれば、 ν_4 ポテンシャルの ν_1 依存性が大きく)、 D^2E " 状態の ν_1 全対称振動励起によっても ν_4 非対称振動モードの Franck-Condon factor が増加するためとの解釈が最も妥当と考えている。

¹⁾ M.E. Jacox, "Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules" in **NIST Chemistry WebBook, NIST Standard Reference Database Number 69**, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov, (retrieved April 11, 2012).

²⁾ 福島、石渡、日本化学会 第 92 回春季年会 2A1-35 (2012).

③ 福島、石渡、第 12 回分子分光研究会 L35(2012).

⁴⁾ T.J. Codd et. al., 67th International Symposium on Molecular Spectroscopy, papers TI01, TI02, and TI03 (2012).