Sapporo 基底関数:第 6 周期 s, p, d ブロック原子の 内殻電子相関を考慮した基底関数の開発

(北大院理¹, 苫駒大², 室工大院工³) 野呂武司¹, 関谷雅弘², 古賀俊勝³

Sapporo basis set: Relativistic basis sets with core-valence correlation effects for the 6-th period s, p, and d-block atoms

(Hokkaido Univ.¹, Tomakomai Komazawa Univ.², Muroran Institute Tech.³)

<u>Takeshi Noro</u>¹, Masahiro Sekiya², Toshikatsu Koga³

[開発]これまでに開発した他の原子と同様に DZP, TZP, QZP の基底関数を作成した。各基底関数の CGTF の個数は各原子の電子相関を考慮する内殻 O 殻 (主量子数 n=5) と原子価殻 P 殻 (n=6) に対して correlation consistent 基底の考え方に沿って決め、その総和とした。ただし、QZP では (s, p, d, f) に対して 1 個づつ個数を減らした。このようにして決めた基底関数の個数を表 1 に示した。表中の縮約パターンは、各 CGTF 関数の項数を表し、冪乗は繰り返しを意味す

表 1: CGTF のサイズと縮約項数

原子	基底	サイズ及び縮約パターン
s ブロック	DZP	$[8s6p3d]\{943^221^3/84321^2/742\}$
	TZP	$[10s8p5d1f]{943^221^5/8431^5/741^3/1}$
	QZP	$[11s9p6d2f1g]\{943^221^6/8421^6/741^4/1^2/1\}$
рブロック	DZP	$[8s6p3d2f]\{943^221^3/84321^2/742/73\}$
	TZP	$[10s9p7d4f1g]\{943^22121^3/8431^6/731^5/7321/2\}$
	QZP	$[11s10p8d5f3g1h]\{943^22121^4/8431^7/731^6/721^3/21^2/1\}$
d ブロック	DZP	$[8s6p3d2f]\{943^221^3/84321^2/742/73\}$
	TZP	$[10s8p6d3f1g]{943^21^6/8431^5/741^4/721/2)}$
	QZP	$[11s9p8d4f2g1h]\{943^21^7/8431^6/741^6/71^3/21/2\}$

る。例えば 1³ は 111 を意味する。この縮約パターンは、各ブロックの代表的の原子に対しテス

トを繰り返して決定した。主量子数が 5 以上の殻で数個の CGTF は 2 項の展開を持つが他のほとんどの関数は原始 GTF 関数であり、非常にコンパクトな基底関数である。基底関数は以下の手順にしたがって作成した。

- 1. 藤永等による Well Tempered Set を拡張した原始ガウス型基底関数を使って理想的な 原子 自然軌道 (ANO) を作る。
- 2. 3次の Douglas-Kroll 近似によって相対論を考慮した minimal 型の HF 基底関数を作成する。
- 3. minimal 型の HF 基底関数の電子相関を考慮する殻の軌道を分割し、既に開発した内殻と原子価電子用の相関関数を加える。上記に述べた基底関数の個数よりも関数の個数が足りない場合は、適当な原始ガウス関数を加え、ステップ1で求めた理想的な ANO を最も良く再現するように分割した関数、加えた相関基底関数と原始ガウス関数を最適化する。

作成された基底関数の軌道指数が、線形従属性も少なく、核電荷の変化に対して (原子番号の隣合う原子間で) なめらかに変化することを確認した。

[原子計算の結果]開発した基底関数を用いて各原子の基底状態について CI 計算を行ない、得られた相関エネルギーと ANO による相関エネルギーの比較を行なった。表 2 に TZP 基底を用いた Ba、Po、Os の計算結果を示した。表中の $E_{\rm corr}$ は相関エネルギー、(%) は ANO による相関エネルギーに対する再現率を表わす。

表 2:相関エネルキー(hartree	表 2	:相関エネルギー	(hartree
---------------------	-----	----------	----------

atom	basis set	E _{corr} (au)	%
Ba	DZP	-0.13375	94.76
	TZP	-0.19684	98.01
	QZP	-0.21849	96.89
Po	DZP	-0.39310	96.99
	TZP	-0.58720	100.51
	QZP	-0.65739	99.20
Os	DZP	-0.29556	92.40
	TZP	-0.41563	97.86
	QZP	-0.46184	99.09

全般的に良好な結果を示している。 DZP における再現率は 92-95% であるが、TZP と QZP では ANO の 98% 以上の電子相関エネルギーを与えている。表にのせなかった他の 14 個の原子についても同様の結果を得た。分子系への応用計算の結果については当日会場で発表する。