金ナノロッドをコアとする Au@Pd コアシェル微結晶の

エピタキシャル液相合成

(九大院・総理工¹. 九大・先導研², 九大院・工³)
 池堂浩史¹. 宇都慶子². 新留康郎³. 辻正治^{1,2}

Epitaxial liquid synthesis of Au@Pd Au nano rods core Pd shell nano crystals

(Graduate School of Eng.Sci¹., IMCE², Graduate School of Eng³.Kyushu University) <u>Koji Ikedo¹</u>, Keiko Uto², Takuro Nidome³, Masaharu Tsuji^{1,2}

【序】

金属ナノ材料は量子サイズ効果、表面効果および体積効果によって、バルク材料とは異な る光学的、電気的、磁気的、物理化学的特性を発揮するため、環境エネルギー分野、医療分 野など様々な分野で研究、応用が進められている。材料により優れた性質を持たせるため、 数種類の金属からなる合金や、ナノ粒子をコアとし、その周囲に他の金属のシェル形成させ たコアシェル微粒子など様々な形状や組成のナノ粒子が合成されており、近年活発な研究が 進められている。それら金属ナノ粒子の性質はナノ粒子の形態、サイズに大きく影響される ため、形態およびサイズの制御、その成長メカニズムの解明はナノ粒子の応用に向けた非常 に重要な研究課題となっている。

本研究ではAuナノロッドをコアとして、その周囲にPdを成長させたAu@Pd コアシェル ナノ粒子を合成し、その成長メカニズムを解明することを目指した。特にAuとPdの混合比 による形状とサイズの変化に着目した。

【実験】

溶媒はH₂Oを使用し、還元剤にAscorbic acid、 保護剤に CTAB(Cetyl Trimethyl Ammonium Bromide)、コア粒子として長軸平均 50nm,短軸 平均 10nm の Au rods(Fig.1.大日本塗料 金ナノ ロッド Au-W4)、Pd シェル原料として H₂PdCl₄ を用いた。まず Au rods 溶液を遠心分離し、 保護剤等を除去した後、CTAB、H₂PdCl_{4、} Ascorbic acid を順に加え、24 時間室温で撹拌

しながら反応させた。その際にシェル形状の Pd の添加量による変化を調べるために Au と Pd のモル比を変化させた。得られたナノ粒子は遠心分離により保護剤等を除去した後、形状 変化を見るため FETEM、EDS 観察を行った。

【結果と考察】

Fig.2 は Au と Pd の比を変化させたときの Au@Pd の FETEM 画像である。(a)より Au:Pd=1:1 の時は Au の短軸のところから Pd が成長しているように見える。また(b)より Au:Pd=1:2.5 の時には Au の両端に Pd が多く 成長し、ロッドの中央がへこんだようなピーナ ッツ形状となっている。(c)(d)より Au:Pd=1:5,1:10 になると Au ロッドを{100}面 で覆うような角ばった形状をとるようになる。

Fig.3 は Au:Pd=(a)1:2.5 と(b)1:5 の EDS 画 像である。赤で示すところが Au の分布、緑で 示すところが Pd の分布を表している。(a)よ り Au:Pd=1:2.5 では Pd は Au ロッドの全体 を覆っているが、中央部分が凹んで、両端が

Fig.2. FETEM images of Au@Pd. Moller ratio of Pd / Au is (a) 1, (b) 2.5, (c) 5, and (d) 10.

リッチになる形状になることが分かった。また(b)より Au:Pd=1:5 の時 Pd は Au ロッドの周 り全面に均一な{100}面をもつように成長することが分かった。(c)は(b)のナノ粒子を青い線で 囲んだところのライン上にどのように原子が分布しているかを示したライン分析の結果であ る。Au の分布が一定になっているのに対し、Pd は Au の周りから徐々に増加し、Au の存在 するところで少し減少して一定の分布を保っていることがわかった。

Fig.3. EDS images of Au@Pd , Pd / Au= (a) 2.5 , (b) 5 .(c)line analysis of (b).

以上の結果より Au ロッドをコアとした Au@Pd ナノ粒子を Pd の量を変えることでその成 長プロセスを考えることができた。またその成長機構は Au の短軸から成長していき、Pd の 量が増えるにつれて両端が Pd リッチなピーナッツ形状から Pd が Au に平行になるようにエ ピタキシャル成長する。この面は{100}面と考えられ、CTAB の Br⁻が Pd の{100}面に選択的 に吸着したことで形成されたと考えられる。 2P078

球形、ロッド、バイピラミッド状銀ナノ 微粒子のナノプリズムへの 急速形状変化と機構解明

(近大·産業理工¹,九大院総理工²,九大先導研³)

矢島 淳彦¹, 五味 慧¹, 前田 能宜², 辻 剛志³, 河済 博文¹, 辻 正治³

Rapid shape transformation from spherical, rod-like, and bipymidal Ag nanoparticles to prisms and clarification of its mechanism

(Kinki Univ.¹, Kyushu Univ.²) <u>Atsuhiko Yajima</u>¹, Satoshi Gomi¹, Yoshinori Maeda², Takeshi Tsuji², Hirofumi Kawazumi¹, Masaharu Tsuji¹

【序】AgNO₃, クエン酸ナトリウム (Na₃CA), H₂O₂, PVP 混合水溶液に還元剤である NaBH₄ を添加すると、最初に黄色の溶液が生成し、20 分程度撹拌放置すると数秒で溶液の色が緑や 赤に急激に変化し、銀ナノプリズムが生成することが知られている。¹最近、我々は銀ナノプ リズムの水溶液中での急速結晶成長における個々の試薬の役割について研究した。²本研究で は銀ナノプリズムは、原料として AgNO₃以外に球形、ロッド、バイピラミッド状の銀ナノ微 粒子を用いても合成可能なことを見出し、それらの形状変化の機構を吸収スペクトルの時間 変化から考察したので報告する。

【実験】球形、ロッド、キューブとバイピラミッド状の銀ナノ微粒子は過去に報告した方法 に従いエチレングリコール中で PVP, NaCl 存在下で AgNO₃ を加熱・還元することで得た。室 温水中で銀ナノ微粒子, Na₃CA, PVP, NaBH₄ 混合溶液を作製後、 H_2O_2 を添加した。得られた溶 液の吸収スペクトルの時間変化を追跡すると共に生成物の形状、サイズ、結晶構造を TEM 像 を測定することにより調べた。 (a-1) after Na₂CA addition to (a-2) after H₂O₂ addition to (a-2)

【結果と考察】図1 に球形微粒子に Na₃CA, H₂O₂またはH₂O₂, Na₃CAの順に 添加して得られた UV-Vis スペクトルの 時間変化を示す。Na₃CA, H₂O₂の順に添 加した場合は球形微粒子からプリズム への形状変化に起因するスペクトル変 化が観測された(1a-1,1a-2)。一方、H₂O₂, Na₃CA の順に添加した場合には吸収ス ペクトルにほとんど変化が認められな かった(1b-1,1b-2)。これらの結果から 銀ナノプリズムは AgNO3 以外に球形銀 ナノ微粒子を試料としても合成可能で はあるが、H₂O₂による球形微粒子のエッ チングは、クエン酸保護微粒子に対して のみ可能であることがわかった。すなわ ち銀ナノプリズムの生成においてクエ

図1.a) Ag 球形微粒子に Na₃CA, H₂O₂、b) Ag 球 形微粒子に H₂O₂, Na₃CA の順に添加して得られ た UV-Vis スペクトル

ン酸は、従来知られていたプリズムの上下の{111}面を保護する役割以外に、H₂O₂による銀ナ ノ微粒子のエッチング開始剤としての役割も担っていることを見出した。エッチング速度の 形状選択性について知見を得るために、別途合成した球形とプリズムの 1:1 混合物に Na₃CA 添加後に H₂O₂を添加した。その結果、球形微粒子のエッチング速度がプリズムのそれより速 いことがわかった。すなわち AgNO₃/Na₃CA/PVP/H₂O₂/NaBH₄ や Ag 微粒子/Na₃CA/PVP/ H₂O₂/NaBH₄溶液において一旦球形微粒子を経て Ag プリズムが生成するのは、球形微粒子の H₂O₂によるエッチング速度がプリズムのそれより速いために球形微粒子は形状選択的にエッ チングされ消失するが、プリズムの種微粒子は残存し、成長するためであることがわかった。

図 2(a)-(e) に Ag の原料として Ag ナノロッドや Ag キューブとバイピラミッドの混合物を 用いた場合の結果を示す。図から明らかなようにロッド、キューブ、バイピラミッドは一旦 H₂O₂による酸化的エッチングにより溶解し Ag⁺になった後、再び球形微粒子を経由してプリ ズムへ形状変換すると考えられる。プリズムの生成において H₂O₂の形状選択的エッチングが 重要な役割を担っていることを Ag ロッドの側面に三角プリズムが成長した旗状ナノ微粒子 を用いて調べた。その結果{100}面を側面に有するロッドが {111} 面を有するプリズムと比 較して速くエッチングされることが確認できた。

図 2. (a) Ag ロッド→プリズム、(b)キューブ、バイピラミッド→プリズム形状変換時の UV-Vis スペクトル変化、(c) Ag ロッド、(d) キューブ、バイピラミッド、(e) プリズムの TEM 像

【参考文献】1) G. S. Métraux, C. A. Mirkin, *Adv. Mater.* **17**, 412 (2005). 2) M. Tsuji, S.Gomi, Y. Maeda, M. Matsunaga, S. Hikino, K. Uto, T, Tsuji, H. Kawazumi, *Langmuir*, **28**, 8845 (2012).

Ag-Pd 二元系金属ナノ微粒子の液相合成と結晶成長機構

(九大院・総理工¹, 九大・先導研², 九大院・統合新領域³, 九大・超高圧電顕⁴) <u>竹村 晃一</u>¹, 宇都 慶子², 白石 千裕¹, 吉田 友紀³, 大尾 岳史⁴, 辻 正治¹⁻³

Synthesis of Ag-Pd bimetallic nanoparticles in liquid phase and their growth mechanism

(Graduate School of Eng. Sci.¹, IMCE², Graduate School of Integrated Frontier Sci.³, Supervoltage Electron Microscope Lab.⁴ Kyushu University)

<u>Koichi Takemura</u>¹, Keiko Uto², Chihiro Shiraishi¹, Yuki Yoshida³, Takeshi Daio⁴, Masaharu Tsuji¹⁻³

【序】二元系金属ナノ微粒子は、一元系金属ナノ微粒子とは異なる特異な物性を示すことから注 目されている。二つの金属塩の混合物の同時還元で二元系金属ナノ微粒子を液相合成する場合に は、多くの場合は合金ナノ微粒子が得られる。その場合は、Au-Ag系のように格子定数が0.2% しか相違しない金属でも明確な面を有するナノ微粒子は得ることは困難で、通常球形の合金ナノ 微粒子が相互の固溶度に従う原子比で生成する。本研究では、Ag-Pd系金属ナノ微粒子の合成を 金属塩の同時還元で行った結果、相互の格子定数が5%も異なるにもかかわらず、キューブなどの 明確な結晶面を有する合金ナノ微粒子を得ることに成功した。得られた Ag-Pd 合金ナノ微粒子 の構造を精密解析し、結晶成長機構を考察した。

【実験】Ag-Pd 合金ナノ微粒子は、蒸留水に、AgNO₃、H₂PdCl₄、アスコルビン酸、臭化ヘキサデ シルトリメチルアンモニウム (CTAB)を溶解させ、35℃で 92 時間撹拌することで合成した。20、 92 時間後に試料のサンプリングを行い、結晶成長の時間変化を追跡した。得られた微粒子は TEM、 TEM-EDS、UV-Vis 測定により構造および光学特性を評価した。原子レベルでの TEM-EDS 測定に は収差補正 STEM (JEM-ARM200F) も使用した。

【結果と考察】Fig.1に合成した Ag-Pd 金属ナノ微粒子の TEM 画像を示す。図より、キューブ、球状多面体、ロッド状の微粒 子の混合物が合成されたことがわかる。20 時間後のサンプリン グで、微粒子の形状の TEM 観察を行った結果、明確な結晶面 は認められず、Fig.1 のような結晶は、ある程度反応時間をか けることで得られることがわかった。

Fig. 2 に Ag: Pd = 1:10 の濃度比で合成した Ag-Pd 金属ナノ
微粒子の TEM、TEM-EDS 画像を示す。Ag 原子、Pd 原子がと
もに粒子全体に均一に分布していることがわかる(Fig. 2.(b),
(c))。Ag 原子と Pd 原子の分布の重ね書きからも各原子が均一に分
布している様子がうかがえる(Fig. 2.(d))。この結果から、得られ

Fig. 1. 92 時間後に観察した Ag-Pd 金属ナノ微粒子の TEM 画像

た粒子はコアシェルではなく合金を形成していると結論した。Ag-Pdキューブ状合金の EDS 測定における定量分析の結果、Ag:Pdの原子比は多くの場合約 20:80 であることがわかった。また、Ag含有率が約 20%を超える Ag-Pdキューブ状合金は、Agに対する Pdの濃度比を下げても得られなかった。このことは、Ag-Pd合金がキューブ形状を維持可能な最大 Ag含有率は、約 20%であることを示唆している。

Fig. 3 に、Ag: Pd = 1:10 の濃度比で合成した Ag-Pd 金属ナノ微粒子を、収差補正 STEM で測定 して得た高分解能 STEM、 STEM-EDS 画像とライン分析データを示す。原子が規則正しくドット 状に並んでいることが示され(Fig. 3.(a))、Ag 原子の分布(Fig. 3.(b))では、Ag 原子は明確に表され ていないが、Pd 原子の分布(Fig. 3.(c))では、Pd 原子一つが緑の丸一つで表されている。Pd 原子は ほとんど隙間なく、規則正しく正方形に並んでおり、Pd が fcc 構造を持っていることを考慮する と、この結晶は{100}面から成る正六面体キューブと考えられる。ライン分析データでは、キュ ーブ状合金中の原子約 7300 個が存在する位置を平均化した時の、各原子の存在する位置がグラフ

Fig. 2. Ag: Pd = 1:10 の濃度比で合成した Ag-Pd 金属ナ ノ微粒子の TEM、TEM-EDS 画像 (a) TEM 画像、(b) Ag 原子の分布、(c) Pd 原子の分布、(d) Ag 原子と Pd 原子の 分布の重ね書き 中のピークとして示されており(Fig. 3.(d))、Ag と Pd 原子の分布はピーク 位置が一致している。このことは、 Ag と Pd は同様の位置に存在するこ とを示唆しており、このキューブ状 合金は置換型固溶体であることがわ かった。

同様のAg-Pdキューブ状合金は 同時還元以外にAgナノ微粒子の分 散溶液に H_2PdCl_4 を添加した場合に も得られた。キューブ状合金の生成 メカニズムとしては、イオン化傾向 より、 Ag^+ よりも Pd^{2+} のほうが還元 されやすいので、先に Pd^{2+} が還元さ れてキューブ形状の微粒子を形成し た後、Agが置換して合金化するとい うメカニズムが考えられる。

Fig. 3. Ag: Pd = 1:10 の濃度比で合成した Ag-Pd 金属ナノ微粒子の高分解能 STEM、
STEM-EDS 画像 (a) STEM 画像、(b) Ag 原子の分布、(c) Pd 原子の分布、
(d) ライン分析データ

2P-080

太陽電池応用へ向けた TiO2 直接コート CdSe 系量子ドットの作製と評価 (産総研・健康工学¹, 関西学院大院・理工²)

<u>平井 孝佳</u>^{1,2},李 春亮¹,安藤 昌儀¹,村瀬 至生¹,玉井 尚登²

Preparation and properties of CdSe quantum dots direct-coated with TiO₂ for solar cell applications

(Health Research Institute, AIST¹, Graduate school of science and technology, Kwansei

Gakuin Univ.²)

T. Hirai^{1, 2}, C. L. Li¹, M. Ando¹, N. Murase¹, N. Tamai²

【緒言】増感剤として色素の代わりに量子ドットを用いた量子ドット増感太陽電池は、安価 に作製出来る次世代型太陽電池として期待されている。しかし現状では、そのエネルギー変 換効率は商用化出来るほど高くはない。その原因の一つに、量子ドットから TiO2粒子へ電 子が移動する際の損失がある。これは量子ドットと TiO2粒子の間に界面や配位子が存在する ためであり、短絡電流下においては配位子を短くすると、電子の失活をほぼ抑えられること がわかっている^[1]。しかし負荷がかかると電子の失活を防ぐことが難しくなる。そこでこれ までのシリコンアルコキシドによる表面コートの研究^[2]を生かし、チタンアルコキシドを用 いて、図1に示すように有機溶液法で作製した量子ドットを TiO2で直接コートし、さらに化 学分析・分光分析の2つの方法によって評価した。これによって表面付近での電子の失活を 防ぎ、エネルギー変換効率を向上させることを目指している。

【実験】有機溶液法で作製した、オレイン酸を配位子とする CdSe/Cd_xZn_{1-x}S 量子ドット(シ クロヘキサン分散)にアルゴン雰囲気下でチタンアルコキシドである Titanium isopropoxide を少量加えて、TiO₂コートを施した。この時、反応時間による蛍光強度の変化をモニタリン グした。TiO₂コートした後、さらにシクロヘキサン、界面活性剤である Igepal、アンモニア 水を加えて、逆ミセル溶液を作り、TiO₂コート量子ドットを有機相から水相に移した。次に シリコンアルコキシドである TEOS を加えて、ゾルゲル法により TiO₂コートの上に安定な SiO₂コートを施して、単離・洗浄し、元素分析を行った。

【結果と解析】チタンアルコキシド添加後, 蛍光強度が徐々に低下していくことから,量 子ドット表面のオレイン酸が,部分的に加水 分解されたチタンアルコキシドに平衡反応 的に置換されていることが示唆された。また この置換後の量子ドットは水相に移ること が確かめられた。さらに元素分析結果から, Ti/Cd モル比を求めることで,量子ドットが TiO₂で 0.5~2 層程度,直接コートされてい ることがわかった。この TiO₂コートのメカ

図1 TiO2直接コート量子ドット

ニズムは次の通りである。まず、シクロヘキサン中の少量の水分により部分的に加水分解されたチタンアルコキシドが、量子ドット表面のオレイン酸と置換されることで始まる。次に 逆ミセル溶液中の水分によって、量子ドット表面のチタンアルコキシドの加水分解が進み、 表面がアルキル基から親水性のヒドロキシ基になることで水相に移り、最後に脱水縮合する ことで直接 TiO2 コートされた量子ドットが得られる。

また同様にして TiO₂ コートを行った CdSe/TiO₂ 量子ドットの蛍光寿命測定を行ったところ,コート前とコート後では図 2 に示すように,数+ ns の範囲において寿命が短くなった。 また蛍光スペクトルと吸収スペクトルにおいてごくわずかなレッドシフトおよび消光が確認 された。これらは CdSe 量子ドットが図 3 (a)に示すようなバンド構造をしており,波動関数 の染み出しがないのに対し,図 3 (b)に示すように,CdSe/TiO₂ 量子ドットでは CdSe と TiO₂ の伝導帯のエネルギー準位が近いことから,一部の電子が CdSe から TiO₂層に染み出し,失 活しやすい状況になっているためであると考えられる。

本実験方法による TiO2 コートでは 加熱操作がないことから、TiO2はアモ ルファス状となることが予想される。 しかし、コートを表面1層程度のごく 少量にすることで,このような結晶性 の影響を抑えることができる。実際に 太陽電池材料として機能させる場合は, 正孔の移動を制限しないために、チタ ンアルコキシドの量を調整して部分的 に TiO2 直接コートを施した量子ドッ トを、TiO₂ナノ粒子に化学吸着させて 使用する。これにより、量子ドットと TiO₂ナノ粒子の間にエネルギー障壁が ほとんど存在しなくなることで電子の 失活が抑えられる。また本実験方法で は有機溶液法で作製した、電子の失活 が少ない量子ドットを使用することが 出来るため,よりエネルギー変換効率 の向上が期待できる。

今後, TiO2直接コート量子ドットを TiO2ナノ粒子に吸着させ, 過渡吸収法 により電子移動の様子を測定する予定 である。

図2 蛍光寿命(上)および蛍光吸収スペクトル(下)

[1] P. Szymanski, N. Fuke, A. Y. Koposov, V. W. Manner, L. B. Hoch, M. Sykora, Chem. Commun., 47, 6437(2011).

[2] P. Yang, N. Murase, M. Suzuki, C. Hosokawa, K. Kawasaki, T. Kato, T. Taguchi, Chem. Commun., 46, 4595(2010).

2P-081 顕微蛍光スペクトルと蛍光寿命イメージング顕微鏡による 緑藻の窒素欠乏応答の分光分析

(京大院理¹、JST さきがけ²) 〇津田裕美¹,寺嶋 正秀¹,熊崎 茂一^{1,2}

Responses of a green alga to nitrogen deprivation

analyzed by microscopic fluorescence spectra and fluorescence lifetime imaging (Grad. Sch. of Sci., Kyoto Univ.¹ & JST-PRESTO²)

<u>Yumi Tsuda</u>¹, Masahide Terazima¹, Shigeichi Kumazaki^{1,2}

[序:背景] 光環境の過不足、無機栄養分の増減など、様々な環境ストレスに対し、植物や藻類の葉 緑体光化学反応は様々な応答を示す。中でもタンパク質などの生体分子を構成する窒素は必須の元素 である。窒素固定能力のない生物では、窒素欠乏によって多くの機能が損なわれるが、一時的な窒素 欠乏状態を耐えしのぐ仕組みも備わっていると考えられる。葉緑体も窒素欠乏の影響を免れないが、 短期間の応答では、内部のタンパク質を分解し、窒素を再利用する仕組みがあると考えられ、光合成 光化学反応が変化していることが期待される。また、微細藻類では、窒素欠乏条件で細胞内に中性脂 肪を蓄積するものが存在し、バイオ燃料生産に関連して高い関心が持たれている。

窒素欠乏条件における細胞内の変化はこのように多面的、複雑であり、多様な微細藻類が多様な環 境に応じて示す生理的応答が十分明らかになったとは言い難い。多くの場合、細胞集団として細胞の 特性、利用価値について評価されるが、より正確な細胞生理の解明には個々の細胞における応答を細 胞内の構造と(光合成等の)反応を同時に観察しながら理解することが必要であると考えられる。我々 は、細胞を生きたまま観察できる顕微分光から得られる情報を最大化し、葉緑体内エネルギー生産活 動を捉えると同時に代謝産物の蓄積も同時に見ることで、藻類生理学に寄与し、有用藻類種の探索・ 観察・検査に役立てることを目指している。本講演では、窒素欠乏条件に置かれた緑藻の一種 *Parachlorella kessleri*について、顕微蛍光スペクトルと顕微蛍光減衰(数+ps-数 nsの領域)を通 して葉緑体光化学反応の変化を調べた。

[試料・装置・実験条件等] 自作ライン走査型励起蛍光スペクトル顕微鏡は主に励起波長 488nm を 用いて、500-750nmの波長範囲、約 2nmの分解能で蛍光スペクトルが画素ごとに得られる[1]。その 顕微鏡システムの光学ポートの一つにレーザー走査型共焦点蛍光寿命画像化(Laser-Scanning Confocal Fluorescent)機能を導入した。基本は市販システムであるが、2 つの蛍光波長の同時観察が 可能である。励起波長は 404nm、装置応答関数は約 0.10ns である。葉緑体(689nm)、中性脂肪染色色 素 (BODIPY、540nm) 蛍光の寿命画像を同時に取得した。中性脂肪を蓄積する候補の緑藻として *Parachlorella kessleri* (ここでは単にクロレラと呼ぶ)を選んだ。これは我々自身による研究実績が あることに加え[1]、現在まで中性脂肪蓄積に関する報告が無かったからでもある。運動能力が無いた め、内部観察が容易である。窒素充足栄養培地(BG-11)で育ったクロレラを窒素欠乏培地(BG-11 から アンモニウム塩と硝酸塩を2%未満にしたもの: BG-11(n0))へ移植し、20 日余りにわたり細胞の蛍光 特性を調べた。

【結果と考察】 長期(数日-数十日)の窒素欠乏により、全体的な傾向として、葉緑体が縮小し、 中性脂肪が蓄積することが観測された。BODIPY および葉緑体の蛍光領域を精査すると、蛍光ス ペクトルの形状変化が中性脂肪蓄積の多寡に依存して見られた。ただし、各蛍光物質(主にクロロ フィルと BODIPY)の吸収スペクトルを考慮するとその変化は単純な再吸収効果で説明される可 能性を排除できなかった。蛍光スペクトルは異なる波長の強度比を比べるものであるが、顕微鏡 対物レンズの焦点と対物レンズ先端までの間の物質分布に応じて、信号減衰率が波長に依存して変化 する可能性がある。蛍光スペクトルの変形が、焦点の物質特性変化を反映するのか、焦点と対物レン ズの間の物質分布を反映しているのか区別ができない。

それに対し、蛍光寿命は同じ波長の信号光子の到着時間に依存した信号であるから、寿命というパ ラメータは焦点と集光面の間の光透過率には依存しない[2]。移植後7日目の窒素充足・欠乏両細胞そ れぞれについて、葉緑体の蛍光寿命画像を得た(下図はその1例)。そして、油脂蓄積量を反映すると 考えられる BODIPY 蛍光強度と比較した。各画素における蛍光減衰を2指数関数でフィッティングし、 各画素の平均寿命を得た。更に、全ての画素の平均寿命を基に、寿命の頻度分布を得た。窒素充足・ 窒素欠乏共に寿命の分布範囲は 100~数百 ps であった。また、頻度分布は、窒素充足条件下の細胞で は一つの鋭い極大を示す、おおよそ対称的な形状であった。窒素欠乏条件下の細胞では鋭い極大はな く、なだらかな寿命分布を示した。すなわち、窒素充足細胞では多くの細胞で寿命分布が似通ってい たが、窒素欠乏細胞では葉緑体蛍光寿命は様々であった。中性脂肪の蓄積量と葉緑体寿命の相関関係 を現在解析中である。

現段階では、中性脂肪の蓄積評価は染色に依存している。非染色で蓄積量・分子種を判別するため に、近赤外励起ラマン散乱スペクトル顕微鏡を準備中である。785nm-820nm でも葉緑体は強い自家 蛍光(PSI 蛍光が主成分)を示すので[1,3]、976nm または 1064nm を励起波長に用いる[3]。

窒素欠乏7日目細胞 689nm / 540 nm 蛍光寿命画像

【参考文献】

 M. Hasegawa, T. Yoshida, M. Yabuta, M. Terazima, and S. Kumazaki (2011) *J. Phys. Chem. B*, Vol.115(14), 4184-4194

(2) S. Ogikubo, T. Nakabayashi, T. Adachi, MS. Islam, T. Yoshizawa, and M. Kinjo, N. Ohta
(2011) J. Phys. Chem. B, Vol.115(34), 10385-10390

(3) M. Ando, M. Sugiura, H. Hayashi, and H. Hamaguchi (2011) *Applied Spectroscopy*, Vol. 65(5), 488-492

天然タンパク質と人工タンパク質のフォールディングおよび凝集物性 (千葉大院・融合¹, 富山県大・エ², 立命館大・薬³) <u>今村 比呂志¹</u>, 磯貝 泰弘², 加藤 稔³, 森田 剛¹, 西川 恵子¹ Folding and aggregation properties of natural and artificial proteins (Chiba Univ.¹, Toyama Prefectural Univ.², Ritsumeikan Univ.³)

【序】

タンパク質の天然構造は、生理条件下で最も熱力学的に安定とされ、溶液中で自発的にフォー ルディング(折り畳み)反応が起こる。立体構造へのフォールディングと安定性は、アミノ酸配 列によって規定されているが、その機構は未だ十分に明らかではない。天然にはないアミノ酸配 列を持つ人工タンパク質の設計を試み、その物性を評価することは、タンパク質の構造構築原理 を知る上で有効なアプローチの一つである。本研究で対象とする人工CroはIsogaiらによって設 計・合成され、天然に存在するDNA結合タンパク質入Cro(天然Cro)とアミノ酸配列は75%異な っているが、同等の立体構造を持つことが確認されている [1]。立体構造と同様に、人工Croと天 然Croのフォールディング物性が同等か調べることは興味深い。本研究では、温度と圧力に対する 天然Croと人工Croの二次構造の安定性を赤外分光法を用いて評価した。

【実験】

天然Cro(配列: MEQRITLKDYAMRFGQTKTAKDLGVYQSAINKAIHAGRKIFLTINADGSVYAE EVKDGEVKPFPS) と人工Cro(配列: MRKKLDLKKFVEDKNQEYAARALGLSQKLIEEVLKRGLP VYVETNKDGNIKVYITQDGITQPFPP) は*E. coli*により発現し、逆相HPLCにより精製、凍結乾燥 したものを用いた。タンパク質粉末を、0.1 M NaCl, 0.05 M HEPES-NaOD/D₂O溶媒に溶解し(タ ンパク質濃度はそれぞれ1.8, 1.4 mM, pD 7.4)、FTIR6100(JASCO)で赤外スペクトルを測定し た。高圧装置としてダイアモンドアンビルセルを用いた。

【結果と考察】

天然 Cro と人工 Cro の FTIR スペクトルにおけるアミド l'バンドを観測し、ピークを各二次構 造に帰属した (Fig. 1)。アミド l'バンドの変化より、天然 Cro が昇温、加圧に伴ってアンフォー ルディングすることが確認された。また、α-helix 構造とβ-sheet 構造に帰属されるそれぞれのピ ーク強度の変化をプロットしたところ、天然 Cro のα-helix 構造とβ-sheet 構造のアンフォールデ ィングは協同的であることがわかった。一方人工 Cro の場合、昇温により 1616 cm⁻¹に新しいピ ークが現れた。これは分子間β-sheet 構造に由来し、人工 Cro が熱凝集することを示している。 この分子間β-sheet 構造は 90 °C まで昇温することにより解離したが、降温すると再び形成した。 人工 Cro のβ-sheet 構造は約 400 MPa において消失したが、α-helix 構造のアンフォールディング にはさらに高い圧力(約1GPa)が必要であった。これは人工 Cro の二次構造のアンフォールデ ィングは協同的ではなく、α-helix が残存しβ-sheet が消失した中間体構造が存在することを示し ている(Fig. 2)。過去のα-helix 型の人工ペプチドの研究を鑑みると [2,3]、加圧による人工 Cro のα-helix のアンフォールディングは、α-helix を安定化している helix 領域の三次構造の破壊が要 因と考えられる。天然 Cro はα-helix 領域とβ-sheet 領域の相互作用が強く、二次構造が互いに安 定化しているのに比べ、人工 Cro はα-helix 領域とβ-sheet 領域の相互作用が弱く、それぞれの二 次構造が独立して安定化されていると考えられる。二次構造間の相互作用が十分でないことによ る立体構造のゆらぎは、疎水性側鎖の露出を容易にし、蛋白質間相互作用を強めると予想される。 当日は X 線小角散乱法を用いた蛋白質間相互作用の評価についても報告する。

Figure 1. Infrared spectra of the amide I' region of natural Cro (—) and de novo Cro (---). The second derivative spectra are also shown.

Figure 2. Schematic illustration showing the effect of pressure on the structure of natural Cro and de novo Cro.

[1] Isogai, Y., Ito, Y., Ikeya, T., Shiro, Y., Ota, M. (2005) J. Mol. Biol. 354, 801-814.

[2] Imamura, H., Kato, M. (2009) Proteins 75, 911-918.

[3] Imamura, H., Isogai, Y., Takekiyo, T., Kato, M. (2010) Biochim. Biophys. Acta 1804, 193-198.

2P083

ホタルルシフェリンの吸収・蛍光スペクトルにおける pH 依存性の理論的 研究 一 密度汎関数計算から評価した共役酸・塩基の濃度比による解析

(名大院・情報科学¹、東大物性研²、横市大院・生命ナノ³)
 樋山みやび¹、秋山英文²、山田健太³、古賀伸明¹

Theoretical Study for pH Dependence of Absorption and Fluorescence Spectra of Firefly Luciferin: Analysis using Concentration Ratio of Conjugate Acids and Bases Estimated with DFT Calculations

(¹Nagoya Univ., ²ISSP, Univ. of Tokyo, ³Yokohama City Univ.) <u>Miyabi Hiyama¹</u>, Hidefumi Akiyama², Kenta Yamada³, Nobuaki Koga¹

【序論】ホタルルシフェリン(以下、ルシフェリンと呼ぶ)は、ホタル生物発光の基質であ り、かつ、その発光起源であるオキシルシフェリンの関連物質である。ホタル生物発光の理 解のため、ルシフェリンの分光的性質にも古くから興味が持たれ研究されてきた[1-8]。水溶 液中におけるルシフェリンの吸収・蛍光スペクトルに現れるピークは電子状態計算から得ら れるエネルギー準位から帰属されている[8]。

ルシフェリンは、酸性を示すカルボキシ基やフェノール性ヒドロキシ基とともに、塩基性 を示す窒素原子を持つ。したがって、水溶液中での吸収・発光過程の理解のためには、それ

とが必要であり、そのために有用な情報の一つに、pKaが挙げられる。ルシフェリンとその共役酸・共役塩基の場合、カルボキシ基のpKaは8.7 であるということが実験的にわかっている[3]。その他の化学種についてもpKaを知ることができれば、図1に示すようなpHに依存するルシフェリンの水溶液中における吸収・蛍光スペクトルの解析を、励起エネルギーだけから考える場合よりも、より精度よく行うことができると考えられる。

ぞれの実験条件で存在する化学種を知るこ

そこで本研究では、ルシフェリンとその共

図1:ルシフェリン吸収・ 蛍光スペクトル[7]

役酸・塩基の pKaを見積もり、pH ごとのスペクトル解析を行うことを目的とする。

【方法】基底状態と第一励起状態のpKaを得るため、ルシフェリンとその共役酸・塩基につい て密度汎関数法を用いて得られた基底状態と励起状態それぞれの安定構造における振動解析 を行った。振動解析の計算から得られる Gibbs の自由エネルギーを用いて、それぞれの化学 種の基底状態と励起状態における pKaを見積った。さらに、実験値を利用することにより pKa の補正を行い、溶媒の pH ごとにそれぞれの化学種の濃度を見積もった。励起エネルギー、振 動子強度、および pH ごとの濃度を考慮することにより、理論吸収スペクトルを得た。

【結果】pH 10 の理論吸収スペクトルを図2に示す。実験スペクトルと比べて長波長側ヘシ

フトしているものの、図1に示す pH 10 の場合の実 験吸収スペクトルとこの理論吸収スペクトルの形状 はよく一致している。実験吸収スペクトルに見られ る 400 nm 付近のピークは(6'O⁻,4COO⁻)の吸収からな り、高エネルギー側にわずかに(6'OH,4COO⁻)のピ ークが含まれている状況を明確に示すことができた。

さらに、pH 1-2 で 400nm 付近に現れる吸収スペ クトルのピークは中性のルシフェリンの窒素にプロ トン付加した分子の吸収ではなく[8]、アニオンの窒 素にプロトン付加した化学種の吸収であることがわ かった。振動子強度の計算により吸収スペクトルの 解析は容易になってきたが、酸性や塩基性の官能基 をもつ分子の水溶液中の吸収スペクトルの解析には 濃度の計算が必要であることがわかった。

<u>参考文献</u>

[1]Seliger et al. (1960) Arch. Biochem. Biophys. 88, 136.
 [2]Seliger et al. (1961) Proc. Natl. 9 Acad. Sci. U.S.A. 47, 1129.
 [3]Morton et al. (1969) Biochem. 8, 1598.
 [4]White et al. (1971) Bioorg. Chem. 1, 92.
 [5]Jung et al. (1976) J. Am. Chem. Soc. 98, 3949.
 [6]Gandelman et al. (1993) J. Photochem. Photobio. B: Biol. 19, 187.
 [7]Ando et al. (2010) Jpn. J. Appl. Phys. 49, 117002.
 [8]Hiyama et al. (2012) Photochem. Photobio. 88, 898.

タンパク質構造変化経路予測法の新規開発

(京大院理) 田村康一、林重彦

A Novel Method to Simulate Protein Conformational Change upon Ligand Binding

(Grad. Sch. Sci., Kyoto Univ.) Koichi Tamura, Shigehiko Hayashi

【序】

ある種のタンパク質は、外部的要因に応答してその構造を変化させ、結果的に機能をも変 化させる。他の分子 (リガンド) と相互作用することで構造・機能を変化させるタンパク質は その1例である。タンパク質とリガンドの相互作用が構造変化を誘起する仕組みに興味が持 たれている。

結晶構造解析や NMR によって多数の構造が原子レベルで解かれてきたが、これらの方法では短寿命な中間体の検出は困難である。すなわち、構造変化前後 (リガンドとの相互作用前後)の安定な終端構造は明らかになっているが、その構造変化経路は不明である場合が多い。結晶化が難しい場合などは、構造変化前後の一方の構造が不明な場合さえある。

All-atom 力場下におけるタンパク質の分子動力学シミュレーション (MD) は、詳細な時 空間スケールでの系の記述を可能にする。一方で計算能力の不足により、シミュレーション の時間スケールが構造変化のそれに届かないという欠点を持つ。計算可能な時間内でタン パク質の構造変化を強制的に誘起するためには、系にバイアスをかけなければならない。 伝統的には、以下の2つがよく使用される:

- Targeted Molecular Dynamics (TMD)^[1]
- Steered Molecular Dynamics (SMD)^{[2][3]}

TMD は、構造変化前後の系の情報に基づいてバイアス・ポテンシャル

 $U_{TMD}(\mathbf{r}_{initial}, \mathbf{r}_{final}, t)$ を構築する。 U_{TMD} を付加した MD 計算を行うことで、 $\mathbf{r}_{initial}$ と \mathbf{r}_{final} を繋ぐ経路が得られる。この方法の欠点はほぼ明らかで、構造変化前後の構造が両 方ともに解かれている場合にしか使用できない。さらに、得られた経路が物理的に無意味で ないか、充分な検証が必要である。

SMD は、系の情報を参考にして化学的直観に基づいてバイアスの力を定義する。この方法は、構造変化前後の構造のうち一方だけ判明していれば使用可能だが、構造変化が複雑であることが予想される場合には使い難い。

$\Delta \mathbf{r} \simeq \beta \mathbf{C} \mathbf{f}$

に基づくバイアスを導入し、摂動を受けた系の構造変化を予測する方法を開発した。この方法は、構造変化前後の一方の構造だけ判明していれば使用可能であり、さらにバイアスを線型応答理論に基づいて、直観によらずに定義可能といった、TMDとSMDの好いとこ取りをしたような特徴を持つ。

この方法論を、酵母カルモジュリンN末端ドメイン^[5] (CaMn)の構造変化経路予測に応用 し、タンパク質がリガンドと相互作用して局所的または大域的に構造変化する様子をシミュレ ーションすることに成功した。

【モデル系】

CaMn は、2 つのカルシウムイオン (Ca²⁺) と 相互作用して大規模な構造変化を起こす。リガ ンドが結合していない apo-CaMn は、Ca²⁺が結合 することでヘリックス間の角度を変化させ、疎水 性領域が露わになった holo-CaMn になる (Fig. 1)。

Fig. 1. CaMn の構造変化

【結果】

まず、holo-CaMn の長時間 MD を行い、力場上の安定構造が NMR 構造に近い"open" 状態ではなく、"partially open"状態であることを明らかにした。

さらに、方法論の検証のために、3 つのバイアス・シミュレーションを行った。そのうちの 1 つの様子は次のようになった。まず、Asp56 が Ca²⁺に配位し、ほぼ同時に His61 が部分的に 回転した。その後、His61 の回転が完了し、さらに、Asp58 が Ca²⁺に配位した。次に、Glu31 と Gln62 の Ca²⁺への配位がほぼ同時に生じ、"partially open"状態に到達した。直後のバイ アス・シミュレーションによって、"open"状態へと移行したが、自発的に"partially open"状態 へと戻った。その他の詳細は当日発表する。

【参考文献】

- [1] Schlitter et al., Mol. Sim., 10, 291 (1993)
- [2] Grubmüller et al., Science, 271, 997 (1996)
- [3] Izrailev et al., Biophys. J., 72, 1568 (1997)
- [4] Ikeguchi et al., Phys. Rev. Lett., 94, 078102 (2005)
- [5] Ishida et al., Biochemistry, 39, 13660 (2000)

2P-085

分子シミュレーションによる転写制御タンパク質 ラクトースリプレッサー二量体と DNA 間の特異的相互作用の解析

(豊橋技術科学大学) 大山達也、松下裕貴、栗田典之

Specific interactions between the dimer of lactose repressor protein and DNA: molecular simulations combined with MD and *ab initio* FMO methods

(Toyohashi University of Technology) Tatsuya Ohyama, Yuki Matsushita, Noriyuki Kurita

【はじめに】

生体内では、常に DNA の情報が mRNA に転写され、そ の情報を基に様々なタンパク質が生成されている。転写抑 制タンパク質ラクトースリプレッサー(LacR)は、アロステ リックタンパク質の一種であり、通常は DNA に結合し、 DNA から mRNA への転写を抑制している。しかし、ラク トースのようなリガンドが存在すると、LacR はリガンド が結合することにより構造を変化させ、DNA から分離す る、あるいは DNA により強く結合することが実験で報告 されている[1]。LacR に対するリガンドは、結合による LacR と DNA 間の結合特性への影響の違いにより、インデ ューサとアンチインデューサに分類される。インデューサ は、LacR に結合し、LacR と DNA 間の結合を弱め、LacR と DNA を分離させ、転写を活性化する。一方、アンチイ ンデューサは、LacR と結合し、LacR と DNA 間の結合を 強め、転写をより抑制する。

Fig. 1 Structure of LacR-dimer + DNA + ONPF complex

我々[2]は、これまでに、LacR に結合するリガンドの違いによる LacR の構造、及び電子状態の 変化を解析し、LacR とリガンド間の結合に重要な LacR のアミノ酸残基、及び LacR 単量体と DNA 間の結合に重要な LacR のアミノ酸残基と DNA 塩基を明らかにした。しかし、リガンドが結合し た LacR と DNA 間の結合特性が、リガンドの種類によって異なる理由の解明には至っていない。 実際は、LacR は四量体で機能し、二量体が DNA を挟む形で結合する。そこで、今回の研究では、 より現実的なモデルとして、LacR 二量体、DNA 及びリガンドから成る複合体を考え、古典分子 動力学(MD)計算とフラグメント分子軌道(FMO)計算を用い、LacR に結合するリガンドの違いが、 LacR と DNA 間の特異的相互作用にどのような影響を及ぼすかを、電子レベルで解析した。

【計算手順】

1. LacR 二量体-DNA 複合体の水和構造の変化の解析

先行研究[2]では、LacR のリガンド結合領域周辺の水分子が、LacR とリガンド間の結合に重要であることが明らかになった。そこで、本研究では、該当領域に存在する結晶水の位置情報も含む LacR 二量体と DNA の複合体として、Protein Data Bank (PDB)の 1EFA を初期構造として採用

した。この構造はリガンドとしてアンチインデューサ ONPF を含んでおり、この PDB 構造の DNA 骨格のリン酸基にカウンターイオンとして Na⁺を付加し、LacR 二量体-DNA-ONPF の初期構造と した。さらに、LacR 二量体にインデューサ IPTG が結合した PDB 構造(ID: 2P9H)と LacR 二量体 -DNA-ONPF を、LacR の Ca 原子が出来るだけ重なり合うようにフィッティングし、LacR 二量体 -DNA-ONPF 中の ONPF を IPTG に置換した構造を、LacR 二量体-DNA-IPTG の初期構造とした。 さらに、LacR 二量体-DNA-ONPF の構造から ONPF を除去して、LacR 二量体-DNA の初期構造を 作成した。これらの 3 つの構造を水分子で覆い、古典 MD 計算プログラム Gromacs を用い、300 K で 10 ns の MD 計算を行い、複合体の水中での構造変化を解析した。

2. LacR と DNA 間、及び LacR 単量体間の特異的相互作用の解析

LacR と DNA 間、及び LacR 単量体間の特異的相互作用を明らかにするため、MD 計算で得た構造の電子状態を FMO 計算プログラム ABINIT-MP ver. 4.3 のマルチレイヤー法を用いて解析した。 LacR と DNA 間の相互作用解析の際は、LacR の DNA 結合ドメイン(2-61 残基)、DNA、LacR と DNA 間に存在する水分子、及びカウンターイオン周辺の水分子を MP2/6-31G 法で、その他の領域を HF/6-31G 法で扱った。一方、LacR 単量体間の相互作用解析においては、単量体から 5 Å以内に存在するアミノ酸残基、及び水分子を MP2/6-31G 法で、その他の領域を HF/6-31G で扱った。

【結果と考察】

MD計算で得た構造に対し、LacR 単量体の重心と DNA の重心間の距離を測定し、LacR に結合 するリガンドの種類により、LacR と DNA の複合体構造がどのように変化するかを解析した。Fig.

2(a)に示す LacR monomer-A と DNA 間の 重心間距離に関しては、ONPF が結合し た LacR は DNA により近づくことが分か った。一方、リガンドが無い LacR 単量体 +DNA 複合体においては、MD 計算の経 過時間と共に、距離が離れる傾向にある。 インデューサ IPTG が結合した場合は、 LacR monomer-A と DNA 間の距離が時間 と共に大きく変化し、インデューサ結合 の影響を定性的に説明できる。現在、MD 計算で得た幾つかの構造に対し、FMO 計 算により、LacR と DNA 間の特異的相互 作用を解析中であり、その結果について は当日のポスターにて発表する。

Fig. 2 Distance between the gravities of LacR and DNA; (a) LacR monomer-A and DNA, and (b) LacR monomer-B and DNA (black lines: no-ligand, red lines: IPTG, blue lines: ONPF).

【参考文献】

[1] R. Daber, *et al.*, *J. Mol. Biol.*, 2007, 340, 609.
[2] T. Ohyama, *et al.*, *J. Comput. Chem.*, 2011, 32, 1661.

分子シミュレーションによるアミロイドβタンパク質と

その凝集抑制剤間の特異的結合特性の解析

(豊橋技術科学大学大学院¹、村田製作所²)

岡本晃澄¹、野村和哉¹、矢野篤志¹、檜貝信一²、近藤孝志²、神波誠治²、栗田典之¹

Ab initio molecular simulations on the specific interactions between amyloid-β protein and its inhibitors

(Toyohashi University of Technology¹, Murata Manufacturing Co. Ltd.²) <u>Akisumi Okamoto¹</u>, Kazuya Nomura¹, Atsushi Yano¹, Shin'ichi Higai², Takashi Kondo², Seiji Kamba² and Noriyuki Kurita¹

【はじめに】

アルツハイマー病(AD)の発症には、脳内でのアミロイド β タンパク質(A β)の凝集が関係している。そのため、A β の凝集を抑制する化合物が、ADの治療薬として注目され、実験により数多く報告されている[1,2]。その中で、トリアジン誘導体である AA3E2 が、A β の凝集を抑制することが Kim らの実験[1]により明らかになった。一方、AA3E2 とは異なる置換基を持つトリアジン誘導体 AA3D2 は、A β の凝集を抑制しないことが明らかになった。しかし、これらの誘導体の置換基の違いにより、A β の凝集を抑制する効果が大きく異なる原因は、原子・電子レベルでは説明できていない。

本研究では、古典分子力学(MM)及びフラグメント分子軌道(FMO)計算を用い、Aβとトリアジン 誘導体間の特異的結合特性を解析し、誘導体のどの部分が、Aβとの結合に重要であるかを明らか にした。その結果を基に、新規のトリアジン誘導体を理論設計し、Aβの凝集をより効果的に抑制 する化合物を提案する。この結果は、Aβの凝集を抑制する新規化合物の研究開発において、有用 な情報になると考える。

【計算手法】

本研究では、Aβの構造として凝集性の高い 42 残基からなる Aβを計算対象とし、α-helix 構造を 持つ Aβ (α-Aβ)の実験構造(PDB ID: 1Z0Q)、及び β-sheet 構造を持つ Aβ (β-Aβ)の実験構造(PDB ID: 2BEG)の両方を採用した。ただし、β-Aβ 単量体に関しては、これまでの実験では、17-42 番目の アミノ酸残基から成る構造しか決定されず、1-16 番目のアミノ酸残基の構造情報が欠損している。 そのため、分子モデリングプログラム MODELLER を用いて欠損部分を補完し、42 残基からなる β-Aβ 単量体構造を作成した。また、トリアジン誘導体の構造は、第一原理分子軌道計算プログラ ム Gaussian03 の MP2/6-31G**法を用いた最適化により求めた。

次に、タンパク質-リガンドドッキングプログラム AutoDock 4.2 を用い、Aβ にトリアジン誘導 体をドッキングし、各複合体の候補構造を 1000 個作成した。これらの構造を、構造の類似性を基 に幾つかのクラスターに分類し、各クラスターの代表構造の周囲 8 Å に水分子を付加し、古典分 子力場 AMBER99 を用い、水和構造を最適化した。各最適化構造のエネルギーを FMO 計算によ り高精度に解析し、その値を基に、最安定な複合体構造を決定した。さらに、FMO 計算により、 Aβ の各アミノ酸とトリアジン誘導体間の特異的相互作用を明らかにした。その結果を基に、Figure 1 (c)に示す新規抑制剤を理論設計し、Aβ と新規抑制剤間の特異的相互作用を解析した。

【計算結果と考察】

Aβの凝集を抑制する効果のある AA3E2、及び抑制効果のない AA3D2 の真空中における最適化 構造を Figure 1 (a)、(b) に示す。AA3E2 と AA3D2 の相違点は、トリアジン骨格の Z の位置に付 加された置換基が異なる点のみである。これらのトリアジン誘導体を α-Aβ 及び β-Aβ にドッキン グさせ、水中で最適化した構造に対し、FMO 計算により Aβ とトリアジン誘導体間の結合エネル ギーを解析した結果を Table 1 に示す。結合エネルギーは、α-Aβ 及び β-Aβ のどちらに対しても、 AA3D2 よりも AA3E2 の方が大きくなり、AA3D2 と比較して AA3E2 が Aβ により強く結合するこ とが明らかになった。この結果は、実験結果[1,3]と定性的に一致する。この原因は、誘導体の置 換基の違いにより Aβ への結合様式が異なり、その結果、誘導体と Aβ のアミノ酸間に形成される 水素結合の数が異なるためであると考えられる。

また、 α -A β と β -A β に対し、誘導体の結合エネルギーを比較すると、Table 1 より、 β -A β の方が 誘導体を強く結合することが分かった。この原因を明らかにするため、A β の各アミノ酸と誘導体 間の結合構造を調べた結果、誘導体は β -A β の疎水性残基とより多く疎水性相互作用していること が明らかになった。これにより β -A β と誘導体の複合体構造がより安定化し、結合エネルギーが大 きくなったと考えられる。

さらに、AA3E2に含まれる疎水性鎖により、AA3E2はAβの疎水性アミノ酸とより多くの疎水 性相互作用を実現し、Aβにより強く結合することが明らかになった。この結果を基に、Figure 1(c) に示す新規の抑制剤を設計し、Aβとの特異的相互作用を解析した。その結果の詳細は、当日のポ スターにて発表する。

Figure 1 Optimized structures of the triazine derivatives in vacuum

Table 1	Total	energies and	binding	energies	between A	ß and	triazine	derivatives

Complex		Binding energy			
Complex	Complex	$A\beta$ + water	Ligand + water	Water	(kcal/mol)
α -A β (1-42) + AA3E2	-45309479.3	-44445619.8	-35407403.8	-34543575.9	31.7
α -A β (1-42) + AA3D2	-45137585.6	-44445523.9	-35235485.6	-34543437.2	13.4
β -A β (1-42) + AA3E2	-45308071.3	-44444212.3	-35405061.6	-34541240.0	37.4
β -A β (1-42) + AA3D2	-45136248.1	-44444220.9	-35233431.0	-34541438.6	34.9

【参考文献】

[1] W. Kim, et al, ACS Chem. Biol., 1 (2006) 461. [2] J. M. Mason, et al., Curr. Opin. Struct. Biol., 13 (2003) 526. [3] H. Shaykhalishahi, et al., Chem. Biol. Interact., 186 (2010) 16.

2P087

Hsp90のADP解離過程における水素結合ネットワークの解析

(金沢大・理工) 川口一朋、齋藤大明、長尾秀実

Hydrogen bond networks in the dissociation process of ADP from Hsp90 (Kanazawa Univ.) Kazutomo Kawaguchi, Hiroaki Saito and Hidemi

(Kanazawa Univ.) <u>Kazutomo Kawaguchi</u>, Hiroaki Saito and Hidemi Nagao

【序】熱ショックタンパク質(Hsp: Heat Shock Protein)は他のタンパク質(クライアントタン パク質)のフォールディングを補助する機能をする分子シャペロンの一つである。Hspは細胞が 高温に曝されるなどのストレスを受けた時に、大量に発現する。また、非ストレス時にも比較的 豊富に存在しており、様々なタンパク質と相互作用していることがわかっている。Hsp90は通常、 二量体を形成しており、機能発現の過程で二量体間の構造が大規模に変化する。この構造変化に は ATP から ADP への加水分解反応が必須である。したがって、ATP との結合を阻害することで Hsp90の機能発現を止めることができる。この様な阻害剤は様々なものが見つかっている。また、 Hsp90はウイルスの複製過程やガン細胞中でも重要な機能をしていることがわかっている。 Hsp90の機能を阻害することでウイルス感染症やガンの治療に効果があるため、治療ターゲット としても注目されている。したがって、ATP、ADP および様々な阻害剤との相互作用を分子論的 に解明することは物理化学・分子生物学だけでなく医学・薬学の分野でも重要である。

ATP の結合による Hsp90 の構造変化が明らかにされているが、ATP の結合および ADP の解離 のメカニズムの詳細は分かっていない。そこで、我々は ADP の解離に伴う結合部位周辺の構造解 析をするために、X 線結晶構造解析によって明らかにされている Hsp90 と ADP の複合体構造を 用いた分子動力学シミュレーションを実行し、熱力学的積分法による結合自由エネルギー計算と、 水素結合ネットワークの解析を行った。

【方法】MD の初期構造には基質結合部位である Hsp90 の N 末端ドメイン (NTD) とそれに結 合する ADP 複合体の X 線結晶構造 (PDB ID: 1byq [1]) を用いた。基本セル内に水分子と Na⁺ イオンを配置し、計 40,673 原子の系となった (図 1)。力場には CHARMM と TIP3P を用いた。 カットオフは 10Å とし、長距離力の計算には PME を用いた。

自由エネルギーの計算には熱力学的積分法を用いた。熱力学的積分法では反応座標rが r_0 から r_1 まで変化する時の自由エネルギー差 ΔG を以下の式で表すことができる。

$$\Delta G(r_0 \to r_1) = -\int_{r_0}^{r_1} \langle F(r) \rangle_r \,\mathrm{d}r$$

ここで、 $\langle F(r) \rangle_r$ は平均力であり、MDのトラジェクトリから求める。また、各結合距離における 水素結合ネットワークの解析を行った。

【結果と考察】

熱力学的積分法により各点(各結合距離)での平均力 $\langle F(r) \rangle_r$ を求めた。その結果、結合距離 r_g が 0.8 nm 以下の点で急激な斥力の増加が見られた。この領域は平衡距離より内側の領域であり、 ADP がタンパク質内部に埋もれている状態である。また、 $r_g \ge 1.5$ で引力はゆるやかに減少していき 0 に近づく。遠方では引力が徐々に小さくなっていくことがわかる。図 2 に平均力の結果から求めた、結合距離に対する自由エネルギープロフィールを示す。自由エネルギーは結合距離 r_g が 0.8 nm で極小点をとることがわかった。その他の詳細や水素結合ネットワークの解析については当日報告する。

【参考文献】

 W.M.J. Obermann, H. Sondermann, A.A. Russo, N.P. Pavletich, F.U. Hartl, J. Cell Biol., 143 (1998) 901.

2P-088 非対称開設一重項分子系の励起エネルギー及び励起プロパティ ーのジラジカル因子依存性の理論研究

(阪大院基礎工) 中野 雅由

Theoretical Study on the Diradical Character Dependence of Excitation Energies and Properties of Asymmetric Open-Shell Singlet Molecules

(Graduate School of Engineering Science, Osaka University) Masayoshi NAKANO

【序】 最近、開設一重項性をもつ分子系が従来の閉殻系と異なる特異な光学物性(巨大な 非線形光学物性や長波長光吸収など)を示すことが理論及び実験から明らかになってきた。 これらの特徴は、励起エネルギーや遷移プロパティーの基底状態におけるジラジカル因子 (y) に対する依存性に基づいて理論的に説明できる。ジラジカル因子は、理論的に定義され る化学指標の一つであり、対称系の場合、トランスファー積分 t と有効クーロン反発 Uの比 の関数で記述され、電子の局在化の程度(すなわち電子相関の程度)を表す[1]。すなわち、 yは0と1の間の値をとり、0は閉殻、1は完全ジラジカル、中間の値は中間のジラジカル性 を表す。以前の研究により、対称2サイトジラジカル系の2電子2軌道 valence configuration interaction (VCI)モデルにおいて求められた、3つ一重項状態と1つの三重 項状態の波動関数とエネルギーの解析解を用いて、励起エネルギーと遷移モーメントのジラ ジカル因子に基づく表式を求め、これらの y 依存性をもとに非線形光学応答特性の y 依存性 を明らかにした[1b]。その結果、「対称開殻一重項分子系の微視的な三次非線形光学効果の 起源である第二超分極率 γ がそのジラジカル因子 y に強く依存し、中間ジラジカル領域で従 来の閉殻系や完全開殻系と比べて大きな値を与える」という新たな構造-特性相関を得た [1a, b]。この結果は、フェナレニル環やグラフェンナノフレークを含む多環式炭化水素、遷 移金属-金属結合を含む系など様々なモデルおよび実在の一重項開殻分子系の高精度量子化 学計算の結果により実証され、さらに、三次非線形光学効果の一つである二光子吸収(TPA) の測定において、開殻性をもつジフェナレニル化合物が閉殻対照系に比べて2桁以上の大き な TPA 断面積(同サイズの無置換炭化水素系で世界最大級)を示すことが明らかになったこ とで実験的にも確かめられた[1c]。以上の結果に基づき、開殻一重項分子系の開殻性に基づ く特異な光学的・磁気的性質が将来のフォトニクスやスピントロニクスへの応用面から注目 を集めている[2]。現在、安定な開殻一重項分子系の骨格の提案、ジラジカルを超えるマルチ ラジカル性の効果、開殻性を化学的・物理的摂動により制御する方法など様々な観点から研 究が進展している。

一方、これまで検討されてきた開設一重項分子系は対称(スピン分極方向に対して対称)な 構造をもつ系であり、非対称性をもつ系については電場効果など[3]を除いて殆ど検討されて いない。一般に、非対称構造(従って非対称電荷分布をもつ)においてもジラジカル性は出 現するため、まず、最小モデルである非対称(異核)2サイトジラジカルモデルにおける非 対称性が基底・励起状態の波動関数とエネルギーに及ぼす効果、すなわち、励起エネルギー や遷移プロパティーに及ぼす効果を明らかにすることが重要である。本研究は、以前の対称 ジラジカルモデルを拡張し、一般に非対称な場合も含めたモデルを構築し、非対称性が励起 エネルギーや遷移プロパティーに及ぼす効果を解明する。

【非対称2サイトジラジカルモデル】 サイト A, Bの原子軌道を χ_A , χ_B とし、まず、A, B が等核(対称系)の場合の結合性(g)、反結合性(u)軌道をもとに局在化自然軌道(LNO)a, bを定義する[1b]。非対称系の場合は、 χ_A , χ_B は非等価となるが、これらを用いたハミルト ニアンの行列要素に非対称性が反映される。解の波動関数は、先に定義した MO 基底{g, u}あ るいはそれから求めた LNO 基底を用いた VCI 行列の対角化による配置混合により記述される が、系が非対称性を持つ場合は、対称系での解の形を使っているため基底状態は $|g\bar{g}\rangle$ に対し て2電子励起配置 $|u\bar{u}\rangle$ だけでなく1電子励起配置 $|g\bar{u}\rangle$ も混合する。非等価の A, B サイトに 対応して、1電子コアハミルトニアン行列要素 (h_{aa} , h_{bb}) や各サイトでのオンサイトクー ロン反発 (U_{aa} , U_{bb}) などはサイト依存にする。LNO 表示での VCI 行列の対角化により、励 起エネルギーや遷移モーメントは、以下の無次元量により記述される。

$$\frac{2K_{ab}}{U} = r_K(\ge 0), \quad \frac{|t_{ab}|}{U} = r_t(\ge 0), \quad \frac{h}{U} = r_h(\ge 0), \quad \frac{U_a}{U_b} = r_U(\ge 0)$$
(1)

ここで、 $h = h_{bb} - h_{aa} \ge 0$, $U = (U_a + U_b)/2$ とする。非対称性が無くなれば従来の対称系の無 次元量と等しくなる。ジラジカル因子yは一般の非対称系では、 $(r_{K}, r_{U}, r_{U}, r_{h})$ の関数で あるが、対称系 (r_{II} =1, r_{h} =0)の場合は、

$$y_{\rm s} = 1 - \frac{4r_t}{\sqrt{1 + 16r_t^2}}$$
 for $r_U = 1, r_h = 0$ (2)

となる。非対称系の場合の y_xを擬ジラジカル因子(対称系ではジラジカル因子に合致する) とすると、あらゆる無次元化物理量を4つの独立な無次元変数 $(r_{K}, y_{S}, r_{U}, r_{h})$ により記述 することができる。例として、 $(y_s, r_K, r_U) = (0.6, 0.0, 1.0)$ の場合の無次元化一重項励起エネルギ ー、遷移モーメント、双極子モーメント差および非対称系のジラジカル因子 yaの非対称性依 存性(いまの場合コアハミルトニアンの差の大きさに対応する r_b依存性)を図1に示す。こ れらの変化の原因や他のパラメータ依存性については当日報告する。

<u>n Lett. 2, 1</u>09<u>4 (</u>201<u>1).</u>

2P089

同位体選択的なレーザー分子整列の最適化シミュレーション

(東北大院・理¹) <u>中島薫¹</u>、中嶋克宏¹、大槻幸義¹、河野裕彦¹ Optimization Simulation of Isotope Selective Laser-Induced Molecular Alignment

(Tohoku Univ.) Kaoru Nakashima, Katsuhiro Nakajima, Yukiyoshi Ohtsuki, Hirohiko Kono

[序] 同位体は物理的、化学的に似通った性質を示し、それらを分離することは基礎から応用まで 広く興味が持たれている。分離の最初のステップは同位体のごくわずかな違い(同位体シフト) を増幅することである。近年、量子干渉を利用した同位体シフトの増幅法が提案されている。例 えば、レーザーパルスで分子の電子励起状態に振動波束を生成する方法では、同位体間の質量の 違いによる振動周期のずれを波束の空間的な位置のずれとして増幅する[1]。しかし、共鳴遷移を 利用することからレーザーの発振波長の制限や、同位体シフトが質量数に依存することから、重 元素への適用の困難さといった問題がある。

一方、回転波束を利用する方法では同位体シフトは質量差のみに依存するため、重元素への応用が期待されている[2]。そこで本研究では、C¹⁸0/C¹⁶01:1 混合気体を具体例として、回転準位の 多光子遷移の観点から確率振幅を通じて同位体シフトを効率的に蓄積していく方法を議論する。 展望として実験で用いられている¹⁵N₂/¹⁴N₂同位体分離を行っていくが、窒素の同位体は核スピン 異性体を持ち、これら異性体は回転準位の偶奇性に選択的な分布を示すため、これらの異性体の 存在を陽に取り入れていかなければならない。

[理論・計算] CO 分子を剛体回転子($C^{16}O$ の回転周期 T_{rot} =8.66 ps)で近似する。直線偏光レー ザーパルスを仮定する。

$\mathbf{E}(t) = \epsilon(t) \cos \omega t \qquad (1)$

ϵ(t)はレーザー電場の包絡線関数である。レーザーパルスの光振動数ωが回転遷移振動数に比べて 非常に大きいと仮定し、ωについてサイクル平均をとると、各同位体のハミルトニアンは(2)式で 与えられる。分子軸とレーザー電場の偏光ベクトルのなす角をθとすれば、

$$H_{xi} = B_{xi}J^2 - \frac{1}{4}\{(\alpha_{//} - \alpha_{\perp})\cos^2\theta + \alpha_{\perp}\}\epsilon^2(t) \quad xi = C^{16}O, C^{18}O(2)$$

ここで、 B_{xi} は回転定数、Jは角運動量演算子であり、 $\alpha_{//}, \alpha_{\perp}$ は分極率テンソルの分子軸に平行、 垂直な成分となっている。同位体の 1:1 混合物について、分子間の相互作用を無視すると、全密 度演算子は各同位体の密度演算子の和で表せる[3]。

$$\rho(t) = \frac{1}{2}(\rho_{X1}(t) + \rho_{X2}(t))$$
(3)

系は量子力学的リュウビル方程式に従って時間発展をする。

$$i\hbar \frac{\partial \rho_{\rm xi}(t)}{\partial t} = [H_{xi}, \rho_{xi}(t)] \qquad (4)$$

C¹⁸O/C¹⁶Oの混合気体にレーザーパルスを照射し、一方の同位体の分子集団を偏光ベクトルの方向 に揃え(整列)、他方を偏光ベクトルと垂直な面に揃える(反整列)ことを目的とする。同位体を 分離するパルスはそれぞれcos²θとsin²θの期待値を最大にするものとして定義する。この時、目 的の達成度合いを以下のように定義する。

$$F = \operatorname{Tr}\left\{\cos^2\theta \rho_{X1}(t_f) + \sin^2\theta \rho_{X2}(t_f)\right\}$$
(5)

ここで、t_fは制御終時刻となっている。

(4)式を拘束条件として、変分法により F が極大となるパルス包絡線の設計方程式を導き、繰り返し計算によってそれを解く事によって $C^{18}O/C^{16}O$ 1:1

混合気体に関するレーザーパルス形を数値的に求める[4]。 [結果・考察] 図1は最適化シミュレーションの結果で ある。整列の度合いを $\cos^2 \theta$ の期待値で評価する。 $C^{16}Oを整列、C^{18}Oを反整列させるパルスを設計した。$ $また、温度 T=0 K、制御時間をC^{16}Oの一回転周期T_{rot}$ $とする。<math>tT_{rot}$ =0.25 に大きなサブパルスを持つ パルス列が得られた(F = 1.47)。また、 tT_{rot} =0.25 に存在 するパルスのみを入射したとき(F=1.40)。この事から、 単一パルスによる回転波束の励起が制御に有効な機構 と考え、電場振幅 ϵ_0 = 15.0 GVm⁻¹のガウスパルス を入射した時の同位体の回転波束のダイナミクス を解析したのが図 2 であり、 $\Delta(t) \equiv < \cos^2 \theta_{16} > (t) - < \cos^2 \theta_{18} > (t) となって$

いる。最適電場のタイミングで一周期内で $\Delta(t)$ が 最大になり(枠内)、達成度 Fの値も最適電場と比べ ほぼ遜色ない結果となった(F=1.46)。以上の事から、 同位体を選択的に整列させるためには単パルス により回転波束を励起し、以降のパルスによって 達成度合いを更に高めている。この結果を踏まえ、 ¹⁵N₂,¹⁴N₂に対しても最適制御シミュレーションを行い、 核スピン異性体が同位体分離に及ぼす影響を 議論する。

[1]I.Sh Averbukh *et al., Phys. Rev. Lett* **77**, 3518 (1996). -1.0
[2]H.Akagi et al., *Appl. Phys. B* **95**, 17 (2009).
[3] Y.Ohtsuki, Y.Fujimura, *Chem. Phys.* **338**, 285 (2007).

[4]H.Abe and Y.Ohtsuki, *Phys. Rev A* 83, 053410 (2011).図2:単一ガウスパルス励起に対する (a)整列度合いと(b)整列度合いの差

2P-090

第一原理オーダーN 計算プログラム CONQUEST における 局在軌道の最適化

(物質・材料研究機構¹, ロンドン大学²) <u>中田彩子¹</u>, 宮崎剛¹, David Bowler²

Optimization of local orbitals in a linear-scaling DFT code CONQUEST

(National Institute for Materials Science¹, University College London²) <u>Ayako Nakata¹</u>, Tsuyoshi Miyazaki¹, David R. Bowler²

【諸言】 オーダーN 法第一原理計算は大規模系を高精度に取り扱うための有力な手法である^[1]。我々の開発しているプログラム CONQUEST では、密度行列最小化(DMM)法に基づいて計算を行う際に密度行列の局所性を利用することでオーダーN を実現しており、密度行列計算における切断半径を調節することで計算の精度やコストを制御できる。最近では百万原子を越える系に対する第一原理計算も可能であることを示している^[2]。

CONQUEST では Blip 基底、擬原子軌道(PAO)基底の二種類の実空間基底を用いることがで きる。Blip 基底はスプライン関数を周期的に配置した有限要素基底であり、平面波基底と同 様に基底の間隔を調整することで精度を系統的に向上させることができるが、高精度な計算 を行うためには数多くの基底を用いる必要がある。一方、PAO 基底では、各原子上に局在化 した基底関数を用いることにより、少数の基底で効率的に高精度な結果を得ることができる。

原子基底の精度を系統的に向上することは難しいが、一般的に原子の各軌道の記述に用い られる基底の数が多いほど高精度である。この各軌道上の複数の基底関数は、適切に線形結 合を取ることによって、より少数の基底関数(サポート関数)へと縮約することができる。 CONQUEST では、この線形結合係数を系内の各原子上でその都度最適化することによって、 精度を維持しながらサポート関数の数を減らすことが可能である。

本発表では、これまで各原子上の PAO で表していたサポート関数を、近接原子上の PAO も含む形で作成する手法を導入することで、より高精度なサポート関数を作ることを試みる。 さらに、周囲の原子の影響を直接取り込みながら縮約係数を決定する方法^[3,4]を導入する。

【理論】 CONQUEST では、DMM 法に基づき全エネルギーを最小にするような密度行列を 変分的に決定する。

$$\rho(\mathbf{r},\mathbf{r'}) = \sum_{i\alpha,j\beta} \phi_{i\alpha}(\mathbf{r}) K_{i\alpha,j\beta} \phi_{j\beta}(\mathbf{r'}), \quad \mathbf{K} = 3\mathbf{LSL} - 2\mathbf{LSLSL}, \quad L_{i\alpha,j\beta} = 0 \quad \text{for} \quad \left(\left| \mathbf{R}_i - \mathbf{R}_j \right| > r_{\text{cutoff}} \right)$$

L は補助密度行列であり、 ϕ_{ia} は原子 i 上の α 番目のサポート関数である。上式のようにL の局 所性に基づき切断半径 r による打ち切りを導入することでオーダーN を達成している。その 際、各局所領域内での計算コストはサポート関数の数の 3 乗に比例するため、少数で高精度 な結果を与えるサポート関数の作成は重要である。従来、サポート関数 ϕ_{ia} は原子 i 上の PAO χ_{μ} の線形結合をとったシングルサイト基底として以下のように与えられていた。

$$\phi_{i\alpha} = \sum_{\mu}^{\mu \in i} c_{\mu}^{i\alpha} \chi_{\mu}$$

線形結合係数 c は系の全エネルギーを最小化するように共役勾配法を用いて決定される。

本研究では、近接原子上の PAO も含むマルチサイトな形でサポート関数を作成する。その 場合には、対象原子 *i* と距離 *r* 以内にある原子 *j* に属する PAO を用いて、

$$\phi_{i\alpha} = \sum_{\mu}^{\mu \in j} c_{\mu}^{i\alpha} \chi_{\mu} \quad \text{for } \left(\left| \mathbf{R}_{i} - \mathbf{R}_{j} \right| \le r'_{\text{cutoff}} \right)$$

となる。多原子に跨るサポート関数を作成する際に、各原子上のサポート関数の直交性を課 すように係数 c を決定することによって、重なり行列の打ち切りによる計算の不安定性を取 り除くことができると考えられる。また、最近 Rayson らにより、各原子における切断半径内 の分子軌道を少数の原子基底に射影することによって縮約係数を決定する方法が提案された ^[3,4]。この方法を導入することで各サイトの化学結合に一層対応した係数を決定することがで き、より高精度なサポート関数を作ることができる。

【結果と考察】 Raysonの方法を GAMESS ver. 2010に導入してテスト計算を行った結 果を図 1 及び 2 に示す。基底関数として、 DZP 基底である 6-31G**の縮約を解いた primitive 基底を用い、Raysonの方法によっ て single ζ (SZ)に再度縮約した。

図1に $C_{10}H_{12}$ 分子(全長約25 bohr)における 切断半径に対するエネルギーの収束性を 示す。Raysonの方法によるSZ 基底を用い た場合、6 bohr 程度の小さい切断半径でも エネルギーは primitive 基底のものにほぼ 収束し、従来の DZP 基底よりも高精度な エネルギーが得られた。

図 2 に H₂O 分子において H-O-H 角度を 104.5 度に固定した場合の O-H 間距離に対 するポテンシャルカーブを示す。最適化さ れた O-H 間距離は primitive 基底及び r'=4.0 [bohr]では 0.974 Å となった。r'=2.0 [bohr] の場合は 0.977 Å であり、誤差は 0.003 Å と非常に小さい。一方、シングルサイト基 底に対応する r'=0.5 [bohr]の場合は 1.100 Å と大きく過大評価し、マルチサイト基底の

効果が大きいことが分かる。上記の方法を導入した CONQUEST による計算結果は当日示す。

D. R. Bowler and T. Miyazaki, Rep. Prog. Phys. **75**, 036503 (2012).
 D. R. Bowler and T. Miyazaki, J. Phys.: Condens. Matter **22**, 074207 (2010).
 M. J. Rayson and P. R. Briddon, Phys. Rev. B **80**, 205104 (2009).
 M. J. Rayson, Comp. Phys. Comm. **181**, 1051 (2010).

水素原子の電子は光速度を超えないか?

Dirac は正しいが Schrödinger は誤り。

(京大理・化学) <u>久保</u>厚

Does the electron of a hydrogen atom moves slower than the velocity of light? Dirac is correct, but Schrödinger is wrong. (Kyoto Univ., Fac. Science, Grad. School of Chem.) Atsushi Kubo

オリジナルの教材としっかりした引用リストのあるテキストで講義を行うことは科 学の教育では重要と思われる。ここでは教材作りのお手伝いとなる材料を提供する。量子化 学の研究では計算の効率を上げるために4成分波動関数を2成分に還元するのが主流のよう である。反面、実験を考えたり、相対論とはそもそも何なのかといった疑問でつまずく者に とってはあまり適切な思考方法ではないように思われる。ここでは量子力学の hydrodynamical formulation に基づいて水素原子の波動関数に対して局所速度を計算して みた。[1-3]通常の量子力学の解釈では波動関数を積分した量に意味があるが、ここでは波動 関数の性質を示す量として局所変数の空間分布をながめてみる。

水素原子に対する Dirac 方程式の解は Rose を参考にした。[4] Am. J. Phy.には教科 書と別の解法が示されている。[5,6] 固有関数は全角運動量 $j, j_z \ge \kappa = \pm (j + \frac{1}{2}) = l, -l - 1$ で指 定できる。エネルギーは κ の符号によらない。 2 体問題では余分の保存量が存在するからで ある。

$$\Psi_{j\kappa j_{z}} = \begin{bmatrix} g_{j\kappa}(r) \chi_{\kappa}^{j_{z}}(\theta,\phi) \\ i f_{j\kappa}(r) \chi_{-\kappa}^{j_{z}}(\theta,\phi) \end{bmatrix}$$
(1)

 $\chi^{j_{\epsilon}}_{\kappa}$ はスピンおよび空間波動関数である。(Rose 参照。)動径関数は以下に与えられる。

$$\begin{bmatrix} rg_{j\kappa}(r) \\ rf_{j\kappa}(r) \end{bmatrix} = C \left(2\lambda r \right)^{\gamma} e^{-\lambda r} \begin{bmatrix} \sqrt{1 + W_{n,|\kappa|}} \left\{ -n'F_1 + \left(N_{n,|\kappa|} - \kappa \right)F_2 \right\} \\ -\sqrt{1 - W_{n,|\kappa|}} \left\{ n'F_1 + \left(N_{n,|\kappa|} - \kappa \right)F_2 \right\} \end{bmatrix}$$
(2)

$$F_{1} = F(-n', 2\gamma + 1; 2\lambda r), \quad F_{2} = F(1 - n', 2\gamma + 1; 2\lambda r)$$
(3)

F は confluent hypergeometric function と呼ばれ簡単に言えば指数関数の親戚である。[7] 非相対論の主量子数nと軌道角運動量lはそれぞれ $N_{n,kl}$ と κ または γ に置き換えられる。

$$N_{n,|\kappa|} = n' + \gamma, \quad n' = n - |\kappa|, \quad \gamma = \sqrt{\kappa^2 - \zeta^2}, \quad \zeta = Z\alpha \simeq Z/137 \tag{4}$$

 α は hyperfine coupling constant。これに核の電荷 Z を掛けた量 ζ が相対論効果の強さの目 安となる。Rose では単位系として a.u.ではなく、c=1とする rational relativistic unit を採 用している。波数とエネルギーは次式で与えられる。

$$\lambda = \zeta / N_{n,|\kappa|}, \quad W_{n,|\kappa|} = \left[1 + \zeta^2 / N_{n,|\kappa|}^2 \right]^{-1/2}$$
(5)

相対論では速度は upper state と lower state を結び付ける演算子 \vec{a} で与えられる。 ここでは局所速度 \vec{v} を次の式で計算した。

$$\frac{\vec{v}(r,\theta,\phi)}{c} = \frac{\left\langle \psi_{j\kappa j_{z}}^{\dagger} \middle| \vec{\alpha} \middle| \psi_{j\kappa j_{z}} \right\rangle}{\left\langle \psi_{j\kappa j_{z}}^{\dagger} \middle| \psi_{j\kappa j_{z}} \right\rangle} = \vec{e}_{\phi} \frac{-2\delta}{1+\delta^{2}} \left\langle \sigma_{\theta} \right\rangle_{\kappa}^{j_{z}}, \quad \left\langle \sigma_{\theta} \right\rangle_{\kappa}^{j_{z}} = \left\langle \chi_{\kappa}^{j_{z}} \middle| \sigma_{\theta} \middle| \chi_{\kappa}^{j_{z}} \right\rangle$$
(6)

ただし $\delta(r) = -f(r)/g(r)$ は lower/upper の比。 $|a\rangle, \langle a|b\rangle$ は 4 次元または 2 次元ベクトル とその内積である。 σ_{θ} は Pauli スピン演算子の緯度方向の成分。 $|\langle \sigma_{\theta} \rangle_{\kappa}^{i_{c}}| \leq 1$ なので動径関数 $-2\delta/(1+\delta^{2})$ にのみに着目する。g(r)のゼロ点の前後で $\delta(r) = \mp 1$ となるので、動径関数は そこで±1、つまり $v_{\theta} \approx \pm c$ となる。相対論古典力学では運動量と速度は異なっていたことを 思い出してもらいたい。局所運動量も以下のように局所速度と異なる。

$$\vec{p}(r,\theta,\phi) = \frac{\mathrm{Im}\left\langle \psi_{j\kappa j_{z}}^{\dagger} \middle| \vec{\nabla} \middle| \psi_{j\kappa j_{z}} \right\rangle}{\left\langle \psi_{j\kappa j_{z}}^{\dagger} \middle| \psi_{j\kappa j_{z}} \right\rangle} = \frac{\vec{e}_{\phi}}{r\sin\theta} \left\{ j_{z} - \frac{\left\langle \sigma_{z} \right\rangle_{\kappa}^{j_{z}} + \delta^{2} \left\langle \sigma_{z} \right\rangle_{-\kappa}^{j_{z}}}{2\left(1 + \delta^{2}\right)} \right\}$$
(7)

一方、非相対論量子論では $v_{\phi} = p_{\phi} = l_z/r\sin\theta$ である。 $l_z \neq 0$ に対してはこの関数は z 軸上で 発散する。つまり非相対論電子の局所速度は光速度を超える。一方、相対論では局所運動量 のみが発散する。局所クーロンポテンシャルも発散するのでこれはおかしな結果ではない。 ただ(6)と(7)のように局所速度、運動量の符号が異なるのは奇妙な結果である。Dirac やその 他大勢の偉い先生方に頼らず少しでも自分で考えることが Science を学ぶ者として必要では ないだろうか。相対論水素原子は禁制遷移やスピン緩和を考える上での基礎である。

[1] J.O.Hirschfelder, et. al, JCP 61, 5435 (1974). [2]C. Colijn and E.R. Vrscay, Found. Phys. Lett. 16, 303 (2003). [3] P. J. Bowman, Am. J. Phys. 76, 1120 (2008). ([2,3]と計算は重複 するが述べたいことが少し異なる。)[4] M. E. Rose, "Relativistic Electron Theory", (John Wiley & Sons, 1961). [5] B. Goodman and S.R. Ignjatovic, Am. J. Phys. 65, 214 (1997). [6] R.P. Martinez-y-Romero, Am. J. Phys.68, 1050 (2000). [7] G.B. Arfken and H.J. Weber, "Mathematical Methods for Physicists, 5th ed.", (Academic, 2001).

2P092

密度汎関数法を用いた金属内包フラーレンHf₂C₂@C₈₄の電子構造 (愛媛大学大学院理工学研究科¹、分子科学研究所²、名古屋大学大学院理学研究科³) 太田知那¹、西 龍彦²、八木 創¹、宮崎隆文¹、篠原久典³、日野照純¹

[序]

フラーレンは中空の籠状炭素化合物であり、その内部に金属元素や金属カーバイドなどを内包す ることが知られている。この内包原子種を選択することによりフラーレンの電子状態を制御する ことが可能となる。そこで、我々は中空のフラーレンが金属元素や金属カーバイドなどのクラス ター分子を取り込んだ内包フラーレンの電子状態について研究してきた。その結果、 Y_2C_2 , **E** r_2C_2 , Lu_2C_2 などの金属カーバイドを内包したフラーレンの分子軌道計算によるシミュレー ションスペクトル(SS)は実測の紫外光電子スペクトル(UPS)をよく再現することを見い 出し、さらにこれら内包フラーレンの最適化構造や電子状態、内包種からケージへの電荷移動量 を明らかにしてきた。今回は、同じ対称性を持つC₈₄とHf₂C₂@C₈₄のUPSを示し、分子 軌道計算によって求められた最適化構造、電子状態、電荷移動量について報告する。 [実験]

Hf₂C₂@C₈₄のUPS測定は分子科学研究所UVSOLのBL8Bの固体光電子分光装置を 使用して、20~60eVの励起光を用いた。単離、精製されたHf₂C₂@C₈₄の対称性は、 ¹³CNMRよりD_{2d}である。そこで、IPRを満足するD_{2d}対称性を有する No.4 および No.23 (FowlerとManolopoulosによる命名法)のC₈₄にHf₂C₂クラスターを内包 したHf₂C₂@C₈₄の初期構造を作製して分子軌道計算を行なった。計算には量子化学計算プロ グラム Gaussian 09を用い、密度汎関数計算には B3LYP、基底関数には CEP-31G を使って構造 最適化を行なった。この構造最適化したHf₂C₂@C₈₄の分子軌道計算によって得られた固有値 にガウス関数を用いてピーク幅を考慮してSSを合成した。また、Hf₂C₂@C₈₄のHfの電荷 量はNPA(Natural Population Analysis)から見積もった。 [結果と考察]

Fig. 1 Lu₂@C₈₄ とHf₂C₂@C₈₄のUPS

Fig. 1にHf₂C₂@C₈₄とLu₂C₂@C ₈₄の価電子帯上部のUPSを示す。ピーク強 度に多少の違いはあるが両者間に良い対応が ある。Hf₂C₂@C₈₄のOnsetは0.9eVであ り、Lu₂C₂@C₈₄のものとほぼ同じである。 また、Hf₂C₂@C₈₄のピークは(A) 1.4、(B) 2.2、(C) 3.6 eV にあり、Lu₂C₂@C₈₄のU PSのピーク位置と同じである。Fig. 2 には、 これらはHf₂C₂@C₈₄の hv=40eV の紫外 光電子スペクトルと構造最適化によって得ら れた6種類の異性体から作製したSSを示す。

Isomer 1~4 は No.23、 Isomer 5,6 は No.4の構造 を初期構造としたもので ある。構造最適化を行なっ たところ、Isomer 1,2,5,6 は C_{2V} 、Isomer 3 が C_{5} 、 Isomer 4 が D_{2} 対称とな った。計算で求めた生成エ ネルギーは Isomer 2 が最 も小さく、そのSSは実測 UPSを良く再現した。こ れらのことからHf₂C₂ @C₈₄の最適構造は Isomer 2 (Fig. 3 参照)で

あると考えられる。Hf2

Fig. 2 H f $_{2}C_{2}@C_{84}OUPS$ (h v=40 e V) \succeq I some r 1~60SS

Fig. 3 構造最適化後の I somer 2

 C_2 クラスターは C_{84} ケージの長軸上に菱形で配置され ている。同一対称性の空の C_{84} に比べて、Hf₂C₂クラ スター内包によりケージ構造はX,Y,Z軸方向にそれぞ れ+0.32Å、+0.15Å、+0.11Åだけ増大している。 Isomer 2 のNPAを行なったところ、内包クラスターの 電子の占有量は、Hfが[core] 5d^{1.52} 6s^{0.20} でCが[core] 2s^{1.33} 2p^{3.49}となった。この結果から、Hf はほぼ+3価、

Cはほぼ-1価の酸化状態であると考えられる。またNatural Bond Orbital 解析は内包クラスターのHfは結合を持たず、C原子同士は三重結合を作りローンペアを持つこ とを示唆した。Fig. 4 と 5 に Isomer 2 の分子軌道(HOMO, HOMO-1)を示す。これらの 軌道はC₈₄の分子軌道(LUMO+1, LUMO)に対応している。これは、C₈₄の各空軌道に Luから電子が移動したことを意味する。

以上を総合すると、 $[H f_2 C_2]^{4+} @C_{84}^{4-}$ の電子状態をとっている結論できる。

Fig. 4 H f₂C₂@C₈₄の分子軌道 (左: HOMO, 右: HOMO-1)

Fig. 5 C₈₄の分子軌道 (左: LUMO+1, 右: LUMO)

2P093

高次ランクサドルを含めた化学反応ダイナミクスにおける反応の境界 (北大生命院¹,北大電子研²)

<u>永幡 裕</u>¹、河合 信之輔 ¹²、寺本 央 ¹²、Chun-Biu Li¹、小松崎 民樹 ¹² A Dynamical Boundary of Reaction Associated with a Higher Index Saddle

(Graduate School of Life Science, Hokkaido Univ.¹, Research Institute for Electronic Science, Hokkaido Univ.²)

Yutaka Nagahata¹, Hiroshi Teramoto¹², Chun-Biu Li¹, Shinnosuke Kawai¹², Tamiki Komatsuzaki¹²

【序】化学反応においてサドル点とその近傍におけるダイナミクスが反応の始状態・終状態 の決定に重要な役割を果たしている。(遷移状態理論を確立した1人である)Wigner らによって導 入された反応の前後を分ける反応分断面は、統計力学をもちいた反応速度定数を見積り際し 重要な役割を果たしてきた (図1(a)(i)この断面は基準振動近似が成立するならば正しい)。近年、非線形 動力学に基づいたランク1サドル (ゼロでない固有値をもつヘシアン行列の負の固有値の数が1つのサド ル)近傍の研究[1](図1(b),(ii):軌道の始状態・終状態を分ける反応の境界をサドル近傍で摂動論を用いるこ とで抽出する)が活発にされてきた。一方、たんぱく質などの巨大な分子においては、数多くの 高次ランクのサドルが存在する。Ar₇に関する数値実験[2]において、溶解温度付近で軌道がラ ンク2サドル周辺に滞在する割合が増えることから、ランク2サドルと相転移との関係性が 示唆されており、ランク1サドルで得られた成果をランク2サドルに拡張しようという試み がここ数年なされるようになってきた[3]。本研究は、それら高次ランクサドル領域での非線 形動力学に基づく研究を更に発展させ、(ランク1サドルにおいて摂動論が収束するならばサドル領域で 抽出できる)化学反応の始状態・終状態を決める境界が、高次ランクサドルでは(そのような境界 があるのにも関わらず)摂動論が収束している状況下でもサドル領域で抽出されず、始状態・終 状態の決定に大域的なダイナミクスが関係している事を示す。

図1本研究の概要 従来の遷移 状態理論では軌道が横断的に交 差する反応分断面を境界に始状 態

・

終状態を

定義していた(a)(i)。 近年提案された力学的反応理論 [1]では鞍点近傍で摂動論を用い ることで始状態・終状態を分ける 境界(赤紫)の抽出を提案してい る(b)(ii)。本研究はそのような境 界を、(サドル近傍でなく)始状 態(水色)・終状態(桃色)に基 づいた軌道の境界((c)いずれの始 状態・終状態にも行かない軌道) を数値的に抽出し、前述の摂動論 (標準形理論)に基づいた反応の 境界の妥当性を検証した(c)。

【理論・方法】サドル領域でモード間の非線形相互作用が無視できる場合、基準座標近似が 成立する。この際、軌道が再交差しない形で反応分断面を定義することが出来る事に加えて、 相空間では軌道の始状態・終状態を分ける反応の境界を漸近線として得ることが出来る(図 1(i))。サドル点エネルギーがより大きくなるとき、基準座標系近似の代わりに摂動論(標準 形理論[1]: Van Vleck の摂動理論の古典版)を用いることで、類似した相空間構造を抽出することが 出来る。このとき、反応分断面・反応の境界は非線形な正準変換をした後の変数を用いるこ とで基準座標近似同様抽出することができる。近年の研究によって、より大きなサドル点エ ネルギーにおいて、反応分断面が抽出できなくなるにも関わらず、反応の境界を抽出するこ とが可能である事が指摘されており[4]、始状態・終状態を分ける反応の境界により重点をお いた、反応機構の解明が期待されていた。

我々は摂動論(標準形理論)を用いた始状態・終状態を分ける反応の境界の抽出の妥当性を検 証するため、2自由度系の、ランク2サドルを有するハミルトン系を構築した。

$$H(p,q) = \sum_{j} \frac{1}{2} (p_j^2 + k_j q_j^2) + \varepsilon q_1^2 q_2^2 \exp[2 - q_1^2 - q_2^2]$$

この非調和項は $|q_1| = |q_2| = 1$ で最大値をとり、漸近領域 $|q_1|$ or $|q_2| = \infty$ でゼロとなる。従って漸近領域では始状態・終状態を q_1, q_2 の符号によって定義することが出来る。漸近領域で初期条件を定義することで、始状態・終状態に依拠した反応の境界である反応性境界を抽出し、それらを標準形理論を用いて抽出した境界とサドル領域で比較した。

【研究結果】 標準形理論を用いて 抽出した終状態を分ける反応の境界 と数値的に抽出した反応性境界をサ ドル領域で比較した所、摂動論で得 た値が収束しているのにもかかわら ず、両者が一致しない (基準座標近似に & 比べて摂動を受ける方向が異なる)事を示 すことに成功した(図2 多項式次数1 5次、3次まで計算して得た反応の境界)。 両者の不一致は、非調和項の計数*ε*が ゼロでない限り生じる。この結果は、 サドル領域で摂動理論を用いた高次 ランクのサドルでの反応性の予測に は、大域的なダイナミクスが関係す るため注意が必要である事を示唆し ている。また摂動論を用いた反応性 の境界と始状態・終状態に基づいた

図2 始状態・終状態を分ける反応性境界と標準形理論を用いた その予測 紫色の線が真の反応性境界で青と緑の点線が標準形理 論で抽出したそれ、灰色の領域が後者が誤って終状態を予測した 領域である。黒の点線は非調和項のない場合の境界。

反応性境界は、反発の強い自由度のほうが高いため、ランク1サドルで摂動論を用いた反応 性境界の抽出が成功していた[3]のは反発する自由度が1つしかないことが原因と考えられる。 【参考文献】

- T. Komatsuzaki and R. S. Berry, Adv. Chem. Phys. 123, 79–152 (2003). ; S. Wiggins et al., Phys. Rev. Lett. 86, 5478–5481 (2001). ; S. Kawai et al., Adv. Chem. Phys. 145 123–169 (2011).
- [2] N. Shida Adv. Chem. Phys. 130B, 129-153 2005
- G. Haller et al., Commun. Nonlinear Sci. Numer. Simul. 15, 48–59 (2010).; P. Collins, G. S. Ezra, and S. Wiggins, J. Chem. Phys. 134, 244105 (2011).; G. Haller et al., Nonlinearity 24, 527–561 (2011).; G. S. Ezra and S. Wiggins, J. Phys. A: Math. Theor. 42, 205101 (2009).
- [4] S. Kawai and T. Komatsuzaki, Phys. Rev. Lett. 105, 048304 (2010).; PCCP. 12, 7626-35 (2010).

スルホン酸水和物ダイマーの分子構造と赤外スペクトル (技術研究組合 FC-Cubic¹, 産総研²)山口真¹、大平昭博^{1,2}

Molecular structure and infrared spectra of sulfonic acid dimer

(FC-Cubic¹, AIST²) Makoto Yamaguchi¹, Akihiro Ohira^{1,2}

【背景と目的】固体高分子電解質型燃料電池の実用化に向けた高温低加湿条件での性能向上には 湿度および温度変化に伴う電解質膜中の水やスルホン酸基の状態変化の把握が不可欠である。IR スペクトル測定は最も有効な分析手法であるが、湿度や温度に伴うスペクトルの変化は複雑であ り、ピークの帰属にも議論の余地が残されている。我々は最近、Nafion などのフッ素化スルホン 酸ポリマーの側鎖モデル化合物の IR スペクトルの 600~1500cm⁻¹の領域を PBE0/6-311G*によ る計算で再現したが¹⁾、主要なピークは高湿度ではスルホン酸の解離したアニオン、低湿度では 非解離のダイマーに帰属され、スルホン酸モノマーやその水和物の生成は認められなかった。一 方、1500cm⁻¹以上の領域では、酸解離とプロトンの水和に伴い吸収帯が大きく変化し、H型 Nafion や側鎖モデル化合物は、低湿度下で 2800cm⁻¹付近にブロードなピークを示すが ^{2,3}、このとき SO₃ の 970 と 1060cm⁻¹のピークは残っており、これはプロトンの特徴的な水和構造に起因するもの と推測される。本発表では、このピークがスルホン酸ダイマー水和物の酸解離構造に起因する可 能性を構造最適化計算および基準振動解析に基づき検討した。

【計算方法】プログラムは ORCA(Ver.2.9.1)を用い、主に PBE0/6-311G*で一水和物ダイマーの 構造最適化および基準振動解析を行った。

【計算結果】硫酸の一水和物(Sulfuric acid monohydrate: SAM)については、酸解離および非解 離ダイマーの最適化構造が計算され、後者が 1kcal mol⁻¹程度安定と報告されている⁴⁰。我々の計 算でも表1に示すように両者の差は非常に小さく、計算方法によっては解離状態の方が安定とな った。また超強酸である CF₃SO₃H の一水和物(Triflic acid monohydrate: TAM)ダイマーは、 硫酸よりも解離状態が安定となる傾向を示した。図1に PBE0/6-311G*で得られた TAM₂の酸解 離構造および非解離構造を示す。前者は2個の非平面構造の H₃O+が 2個の SO₃・基に2個および 1 個の水素結合を形成している。後者は、モノマーの一水和物と同様、スルホン酸の OH 基が 1 個の水分子に水素結合し、水分子の OH の片方がスルホン酸の S=O に配向して 5 員環に近い構造 をとり、モノマーでは空いているもう 1 個の OH 基がもう一方のスルホン酸の S=O に水素結合し てダイマーを形成しており、既報の SAM₂の非解離構造 ⁴⁰とは異なる。また、TAM₂の解離構造 では H₃O+と SO₃・の協奏的な内部回転障壁が 1.5kcal mol⁻¹、SAM₂では解離・非解離のプロトン移 動の障壁が 1.8kcal mol⁻¹と得られ、一水和物ダイマーでは低い障壁を伴う多数の局所安定構造を 考慮する必要があることが示唆された。

次にフッ素化スルホン酸ポリマーの側鎖モデル化合物 Perfluoro(2-ethoxyethane) sulfonic acid (PFEESA: CF₃CF₂OCF₂CF₂SO₃H)の計算を行った。ダイマーおよび一水和物ダイマーの解離お よび非解離構造を図 2 に示す。後者ではモノマーの all-trans 構造を仮定したが、スルホン酸基の 構造は TAM₂ とほぼ同様となった。表 2 に示すように、一水和物ダイマーの解離および非解離構

表1 酸解離への基底関数と計算方法の影響							
		ΔE (kcal mol ⁻¹)					
Method	Basis set	SAM_2	TAM_2				
PBE0	6-311G*	0.41	2.66				
	6-311+G*	0.18	1.92				
B3LYP	6-311G*	-1.08	0.99				
	6-311+G*	-1.68	-0.37				
MP2	6-311G*	-2.16	1.05				

造のエネルギー差は、エンタルピーは解離構造が安 定となり、dispersionを補正した計算ではその程度 が大きくなったが、基準振動解析から得られた Gibbs 自由エネルギーは非解離が安定となった。

PFEESA の IR スペクトル ³⁾を図 3 に示す。 ATR-IR 測定開始直後は、913 および 1407cm⁻¹に 二重に水素結合したダイマーに特徴的なピークが 現れるが、吸湿に伴いこれは消失し、SO₃・のピーク が 971および 1060cm⁻¹に現れる。これらは 20%RH でもほぼ同じだが、高波数側は 2800cm⁻¹付近のピ ークが減少し、3400cm⁻¹付近のピークが成長する。 基準振動解析から得た IR スペクトルを図 4 に示 す。cis-PFEESA₂ では 897、1416cm⁻¹にピークが 現れ、実測のピークが再現されている。一水和物ダ イマーの解離構造のスペクトルは 973、1063cm⁻¹ に SO₃・のピークを示し、実測とよく一致するが、 非解離構造は 946cm⁻¹にピークを示し、解離構造 と比較して実測との一致は劣る。一方、1500cm⁻¹ 以上の領域では、解離構造では H₃O+の非対称伸縮

が2687cm⁻¹に強い吸収を示し、これは実測のブロ

ードな吸収帯と比較的近い振動数を示すのに対し、

非解離構造では SO₃H の OH 伸縮による吸収が 2103cm⁻¹に強く現れるという結果となった。このように、解離構造の方が実測の IR スペクトルの特徴とよく対応している結果が得られた。なお、 解離構造では、計算で 1392cm⁻¹に H₃O⁺の変角振動のピークが現れたが、これは実測の 1200cm⁻¹ 付近のブロードな吸収に対応しているものと考えられる。

以上の結果より、スルホン酸ダイマーは一水和物で酸解離構造をとる可能性が示唆されたが、 非解離構造とのエネルギーの差は小さく、多くの局所安定構造が存在すること、また計算方法に

よっても相対的な安定性が変化する。また OH 伸縮や変 角のブロードなピークの線形の解釈も含めて、スペクト ルの帰属にはさらに高度な計算を進める必要がある。

【文献】¹⁾コンピュータ化学会 2012 春季年会 1P05. ²⁾Buzzoni et al. JPC, **99**, 11937(1995). ³⁾Warren et al. JPCB, **112**, 10535(2008). ⁴⁾Arrouvel et al. THEOCHEM, 718, 71 (2005).

【謝辞】本発表は経済産業省資源エネルギー庁および独立行 政法人新エネルギー・産業技術総合開発機構の「燃料電池先 端科学研究事業」によるものである。

2P-095

五配位 Ni(II) -N3S2 錯体の理論研究:スピン状態と結晶構造の関連 京大・福井謙一研究セ¹ 塚本 晋也¹, 榊 茂好¹

A Theoretical study of Spin Cross Over (SCO) of Ni(II)-N3S2 Complex in solid state (Fukui Institute for Fundamental Chemistry, Kyoto University¹) <u>Shinya</u> <u>Tsukamoto¹</u>, Shigeyoshi Sakaki¹

【背景及び目的】 遷移金属錯体の結晶中でのスピンクロスオーバー (SCO) 現象は、分子素子等への応用が期待される。近年、五配位Ni(II) 錯体Tp^{Ph,Me}Ni(S₂CNMe₂)1 [Tp^{Ph,Me}=hydrotris(3-phenyl-5methyl-1-pyrazolyl)borate] が、結晶中で二つの独立な構造 Ni1, Ni2 を持ち (Scheme 1, Fig.1)、Ni2 のみ温度によりSCOを起こすことがX線構造か ら示唆された[1]。本研究では、Ni1 とNi2 の違いを電子状態計算から議論し、分子性 結晶中のスピンクロスオーバー現象を検討した。

Fig. 1 X-ray structure of $Tp^{Ph,Me}Ni(S_2CNMe_2)$ in 123 K

Scheme 2. Monomer with substituent

【計算方法】二種類の基底関数(BS-I, BS-II)を用いた。BS-I では Ni の内殻電子を Stuttgart ECP で置き換え 2f 分極関数を加えたものを用い、C, H, N, B, S には 6-31G(d) を用いた。BS-II では Ni には BS-I と同じ基底関数と ECP を、それ以外の原子には cc-pVDZ を用いた。構造最適化は B3PW91/BSI で、相対エネルギーは B3LYP*/BS-II で計算した。

[結果と考察] 1 の最適化構造とX線構造を比較するとNi1 は低温、高温双方共tripletの 最適化構造に近く,Ni2 は低温でsingletに,高温でtripletの構造に近いことが示された (Table1)。配位子のPhおよびMeをHで置き換えたモデル錯体で電子状態計算を行うと、 singletではd₂₂がHOMO、d_{xy}がLUMOであるが、tripletでは双方がSOMOとなっている ことが示された。この結果、tripletではNi-N_{eq},Ni-S結合が長く、Ni-N_{ax}結合が短くな る(Fig. 2)。逆にsingletではdz²が二重占有になるため、Ni-N_{ax}結合が長くなる。1 の最 適化構造及びモデル錯体でのsinglet, tripletの構造変化から、Ni1 は低温から高温まで tripletを取り、Ni2は低温ではsingletを、高温ではtripletを取ることが示唆された。しか しNi2はX線構造と単量体の最適化構造との一致が悪い。そこでa,b軸方向の周囲の隣 接置換基の一部を取り入れて構造最適化を行ったところ(Scheme 2)、Ni2のNi-N1距離 が改善され、実験結果と近い構造が得られた(Table1)。次にモデル錯体と二量体のX 線構造についてsingletとtripletの相対安定性を検討した。モデル錯体のPESではtriplet のminimumがsingletのminimumより安定である(Fig. 3A)。このPESはNi1が低温高温双 方でtripletをとる実験事実と一致している。しかし、モデル錯体のPESはNi2が低温で singletが安定であるという実験事実と一致しない。そこで二量体のX線構造からPES を計算すると、Ni2は低温でsingletがtripletより安定となっている(Fig. 3B)。この結果 から、結晶の影響でNi2のsinglet, tripletの相対安定性が逆転し、Ni2が低温でsingletを 取ることになると示唆される。c軸方向の結晶効果を考慮した結果は当日発表する。

Fig. 2 Geometry and frontier orbitals of model complex [Tp^{H,H}Ni(S₂CNH₂)]

Fig. 3 PES of model complex and dimmer along Ni-N_{ax} **Table 1.** Optimized geometrical parameters^a

	expl.				calcd.		
	Ni1		Ν	i2	monomer		
T (K)	123 K	293 K	123 K	293 K	singlet	triplet	
Ni-N1 (Å)	2.038	2.048	2.401	2.149	2.927 (2.478)	2.069 (2.027)	
Ni-N3 (Å)	2.111	2.111	2.003	2.083	1.929 (1.945)	2.128 (2.123)	
Ni-N5 (Å)	2.048	2.058	1.972	2.046	1.913 (1.934)	2.063 (2.074)	
Ni-S2 (Å)	2.342	2.344	2.257	2.323	2.219 (2.234)	2.379 (2.379)	
Ni-S1 (Å)	2.401	2.393	2.272	2.361	2.227 (2.249)	2.436 (2.448)	

^aIn parentheses are optimized parameters of monomer with substituent in 123K [文献] [1] Huaibo et. al. *J. Am. Chem. Soc.* 133, 5644 (2011).

大規模分子動力学計算を目指した DC-DFTB 理論の開発

(分子研¹,早大理工研²,早大先進理工³,JST-CREST⁴,名大院理⁵) 西澤宏晃^{1,2},中井浩巳^{2,3,4},Stephan Irle⁵

Development of DC-DFTB method aimed at large scale molecular dynamics

(IMS¹, Waseda Univ. RISE², Waseda Univ.³, JST-CREST⁴, Nagoya Univ.⁵) <u>Hiroaki Nishizawa^{1,2}</u>, Hiromi Nakai^{2,3,4}, Stephan Irle⁵

【緒言】

密度汎関数強束縛 (DFTB) 法 [1, 2] は,密度汎 関数理論 (DFT) に基づく半経験的手法である。2 原子間の距離とそれらの種類によって変動するパ ラメータ [1]を用いており,AM1,PM3 などほか の半経験的手法に比べて高精度な結果を得ること ができる。また,積分を行うことなくすべての要 素を計算することが可能なため,その計算コスト は比較的低い。本手法によりカーボンナノチュー ブなどのナノスケールの系や溶液系などを取り扱 うことで,それらの反応系を精密に解析し,その制 御を行うことが可能になると考えられる。しかし Fig. 1 に示すように,その計算コストは前因子は 小さいものの,系の大きさ N に対して $O(N^3)$ で あり,大規模系に対する分子動力学計算は困難で ある。エネルギー計算を行うための手続きごとに

Fig. 1 Computatinal time for energy calculation of $C_{2n}H_{2n+2}$ obtained by DFTB.

計算時間を調査すると,そのほとんどがハミルトニアンの対角化によるものであることが分かる。そこで本研究では,対角化に対する計算時間を削減するために,中井,小林らによって開発が進められてきた,大規模計算手法である分割統治(DC)法[3]をDFTB法に対して適用したDC-DFTB法の開発を行った。分子動力学計算を行うためにエネルギー勾配計算も行ったので,これらの結果についても報告する。また,次世代スーパーコンピュータ「京」での実行を考慮し並列化も行っているため,併せて報告する。

【理論】

DFTB 法のエネルギーは次のように表される。

$$E_0 = \sum_{\mu\nu} D_{\mu\nu} (h_{\mu\nu} + F_{\mu\nu}) + E_{\rm rep} = \sum_{\mu\nu} D_{\mu\nu} H^0_{\mu\nu} + \frac{1}{2} \sum_{A,B}^{\rm atom} \gamma_{AB} \Delta q_A \Delta q_B + E_{\rm rep}$$
(1)

ここで, $H^0_{\mu\nu}$, γ_{AB} , E_{rep} は上述したパラメータにより求められる。 $D_{\mu\nu}$ は電子密度, Δq_A は原子 AのMulliken密度変化量である。DC-DFTB法では全系を重なりのない部分系 α に分割し,周囲の 効果を取り込むためにバッファ領域を加えて局在化領域とする。局在化領域に対してDFTB方程式

$$\mathbf{F}^{\alpha}\mathbf{C}_{i}^{\alpha} = \epsilon_{i}^{\alpha}\mathbf{S}^{\alpha}\mathbf{C}_{i}^{\alpha} \tag{2}$$

を解くことで,部分系 α の軌道係数 \mathbf{C}_i^{α} を得る。 \mathbf{F}^{α} , ϵ_i^{α} , \mathbf{S}^{α} はそれぞれ部分系 α の Fock 行列, 軌 道エネルギー,重なり行列である。電子数保存の制約条件から共通の Fermi 準位を決定し,密度行列 を次のように構築する。

$$D^{\rm DC}_{\mu\nu} = \sum_{\alpha} p^{\alpha}_{\mu\nu} D^{\alpha}_{\mu\nu} = \sum_{\alpha} p^{\alpha}_{\mu\nu} \sum_{i} f_{\beta} (\epsilon_F - \epsilon_i) C^{\alpha}_{\mu i} C^{\alpha}_{\nu i}$$
(3)

ここで $p^{\alpha}_{\mu\nu}$ は分割行列, ϵ_F は Fermi 準位, $f_{\beta}(x)$ は Fermi 関数である。 Δq_A が変化しなくなるま で式 (2) の方程式を繰り返し解き,エネルギーを求める。その後,得られた密度行列を用いてエネル ギー勾配を計算する。エネルギー勾配計算には小林らの手法 [4] を用いた。

【結果と考察】

DC-DFTB 法をポリエチレン $(C_{2n}H_{2n+2})$ 分子に適用した。

初めに, Fig. 2 に DC-DFTB 法を用いて計算を行ったときの計算時間を示す。 C_2H_2 を1ユニットとし,部分系を1ユニット,バッファ領域を左右8ユニットとした。左図には比較のために通常のDFTB 法による結果も灰色で示した。図からも明らかなように,DC-DFTB 法により計算コストを大幅に削減することに成功している。また,右図に拡大図を示しているが,DFTB 法でボトルネックとなっていた対角化の計算コストが,O(N)となっていることが確認できた。ほかの手続きによる計算時間も前因子が小さく,全体としてO(N)が達成できていることが分かる。

次に計算精度について述べる。Fig. 3 に DC-DFTB 法においてバッファサイズを変えたときの, 通常法とのエネルギーの誤差を示した。部分系は1ユニットで変化しないため,その誤差は原子数に 比例して増加していることが分かる。バッファ領域を左右3ユニットとしたとき, $C_{2500}H_{2502}$ では 30 m E_h 以上の誤差があるが,バッファ領域を大きくするにつれてその誤差は減少する。左右7ユ ニットをバッファ領域とした場合,1m E_h 以下の誤差で全エネルギーを求めることができた。

最後にエネルギー勾配法について示す。Fig. 4 に部分系を 1 ユニット, バッファ領域を左右 8 ユニットとした DC-DFTB 法と通常の DFTB 法によるエネルギー勾配の計算時間を示した。式 (1) の右辺で表される第 1,2,3 項の計算時間をそれぞれ Normal, Gamma, Repulsive contribution として示している。図からもわかるように,エネルギー勾配計算においてボトルネックとなるのは Normal contribution である。DC-DFTB 法ではこの項を部分系ごとに求めるため,計算時間が短縮され,さらに O(N) が達成できていることが分かる。また,このときの平均絶対誤差は 10^{-5} であり,高い精度で計算を行うことが可能であることが確認できた。

これらの結果は,本手法を用いた大規模系に対する分子動力学計算への適用の可能性を示唆している。当日はカーボンナノチューブ,溶液系への適用に関しても報告を行う。

Fig. 2 Computatinal time for energy calculation of $C_{2n}H_{2n+2}$ obtained by DC-DFTB and conventional DFTB.

Fig. 3 Buffer-size dependency of the energy error in $C_{2n}H_{2n+2}$ obtained by DC-DFTB [in mE_h].

Fig. 4 Computatinal time for energy gradient calculation of $C_{2n}H_{2n+2}$ obtained by DC-DFTB and conventional DFTB.

- [1] D. Porezag, Th. Frauenheim, Th. Köhler, Phys. Rev. B, 51 (1995) 12947.
- [2] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim, S. Suhai, G. Seifert, Phys. Rev. B, 58 (1998) 7260.
- [3] M. Kobayashi, H. Nakai, in Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications (2011, Springer), pp. 97-127.
- [4] M. Kobayashi, T. Kunisada, T. Akama, D. Sakura, H. Nakai, J. Chem. Phys., 134 (2011) 034105.

2P-097

CuM 異核二核錯体の磁気的相互作用に関する 基底関数・汎関数依存性

(阪大院理)<u>畑ケ宇宙</u>・安田奈都美・北河康隆・山中秀介・川上貴資・奥村光隆

Basis set and functional method dependency on magnetic interaction of CuM hetero binuclear complex

(Osaka Univ.) <u>HATAKE Hiroshi</u>, YASUDA Natsumi, KITAGAWA Yasutaka, YAMANAKA Shusuke, KAWAKAMI Takashi, OKUMURA Mitsutaka

[序] コンパートメント配位子H₄fsaenを用いるとN₂O₂サイトにCu²⁺, O₄サイト にM²⁺またはVO²⁺を結合させた一連のCuMへテロ二核錯体を合成する事が出 来る^[1]。様々な対イオンを用いる事により、磁性に変化がある事が報告 されている^[1]。対イオンの組み合わせによっては実験値が報告されてい るものもある。興味深いことにこれらの錯体のスピン交換積分Jは金属イ オンの組み合わせにより次のようになることが報告されている。

J (CuVO) =59cm⁻¹, J (CuMn) =-22cm⁻¹, J (CuCo) =-35cm⁻¹, J (CuNi) =-75cm⁻¹, J (CuCu) =-330cm⁻¹ 図 1.CuMfsaen の構造式

xy 軸を面内配位原子の方向に取ると、Cu(II)の不対電子は $d_{x^2-y^2}$ 軌道にあることから 各対イオンの不対電子の軌道がどの軌道かで定性的に説明可能である。下図は中心金属の磁性に関係する自然軌道を表す。図2では金属の軌道同士が直交しており不対電子は互いに相互作用をしない。図3では不対電子の軌道に重なりが認められる。

図 2.CuMfsaen の中心金属の HONO(強磁性)

図 3.CuMfsaen の中心金属の HONO(反強磁性)

この理論計算においては手法および基底関数依存性が見られるが本研究では磁気的相互作用に対する基底関数依存性を調べた。

[計算]本研究では計算手法として Hartree-Fock 及び密度汎関数法を用いた。密度汎関数法の計算は UBHandHLYP と UB3LYP を用いた。X 線構造解析の座標を仮定した。基底関数依存性を調べるため配位子の基底関数を 6-316 系列の基底関数で計算する事にし、基底関数を順々に大きくした。金属原子の基底関数は midi+pd/midi+p から cc-系列、aug-cc 系列と基底関数を広げて行くこととした。cc 系列や aug-cc 系列の基底関数だけでなく Def2 系列の基底関数を用いた計算も行った。計算にあたって基底関数を次第に大きくした。

サイト ab 間の有効交換積分 J_{ab}値の算出には当研究室が提案しているスピン射影法の式である 山口の式

$$J_{ab} = \frac{E_{BS}^{LS} - E^{HS}}{\langle \hat{S}^2 \rangle^{HS} - \langle \hat{S}^2 \rangle^{LS}_{BS}}$$

を用いた。これを近似スピン射影(AP)有効交換積分値と言う。有効交換積分値の分母は必ず正で、 分子は HS 状態と LS 状態のエネルギー差になっている事により、

J_{ab}<0, E_{BS} < E^{HS} LS(anti-ferro)が安定

 J_{ab} <0, $E_{BS}^{LS} > E^{HS}$ HS(ferro)が安定 となる。

この式を用い、J値を算出し、基底関数依存性を見積もった。

[結果] 上述の方法を図1に示した Cu(II)M(M=V0, Ni, Fe³⁺Cl⁻, Co, Cu) 錯体へと適用した。この錯体は中心部に Cu(II)Mを含みこれの金属イオンの磁気軌道が錯体の磁性の性質を決定する。本研究では上述の手法を用い、二つの金属イオン間の磁気的相互作用を求めた。UB3LYP 汎関数を用い、金属:cc-pVTZ、配位子:6-31G**の場合の M=V0 と M=Ni の場合の自然軌道解析の例を示す。

図 4.CuVOfsaen の自然軌道解析(HONO)

図 5.CuNifsaen の自然軌道解析(HONO)

図4の金属の自然軌道は図2に示される強磁性を示す形になっており、図5の金属の自然軌道は図3に示される反強磁性を示す形になっている。UB3LYP 汎関数には計算して行く上で問題点がある事も分かった。UB3LYP 汎関数はバイラジカルの含まれる分子の系ではJ値を過小評価してしまう。表1には M=V0, Ni, Fe³⁺Cl⁻, Co, Cu の場合の UB3LYP 汎関数を用い、金属の基底関数を aug-cc-pVTZ、配位子の基底関数を 6-31G**とした時の計算から求めたJ値をまとめた。表1より M=Cu の時、バイラジカルとなった CuCufsaen 分子の計算から求めたJ値が過小評価されてしまっている事が分かる。

表 1.UB3LYP 汎関数を用いたときの J 値 金属:aug-cc-pVTZ

計算からの J 値に関する詳しい基底関数依存性や汎関数依存性に関する結果は当日報告する。 [1]N.Torihara, H.Okawa and S.Kida, Chem. Lett., **1978**, 1269

[2]O.Kahn, J.Galy, Y.Journax, J.Jaud and I.Morgenstern-Badarau, J.Am. Chem. Soc., 1982, 104, 2165

2P098

トリスビピリジン鉄(II)錯体のスピン状態に関する理論的研究 (名大院・情報科学)<u>井内 哲</u>

A theoretical study on spin states of iron(II)-tris(bipyridine) complex (Nagoya University) <u>Satoru Iuchi</u>

鉄(II)錯体は複数の d-d 励起状態と電荷移動励起状態を持ち、それらのスピン状態は 1, 3, 5 重項と多様である。この多様な電子状態の性質は、熱や光照射などによるスピン状態変化、 色素増感太陽電池への応用の可能性、ヘム鉄の電子状態などと関連しており、基本的な鉄(II)

錯体の電子緩和機構を調べる事は重要な 課題と考えられる。実際、例えば基本的 な鉄錯体[Fe(bpy)₃]²⁺の水溶液中における 光励起後のダイナミックスに関して、サ ブピコ秒オーダーのスピン状態変化から サブナノ秒オーダーのスピン状態変化に 至るまでの一連の緩和過程が時間分解分 光や構造解析によって研究されてきてい る¹⁾。

トリスビピリジン鉄(II) ([Fe(bpy)₃]²⁺)錯体 (bpy: 2,2'-bipyridine, red: Fe, blue: N, black: C)

このような背景のもと、量子化学計算

による緩和機構の解明も試みられている²⁾。しかし、鉄(II)錯体等の遷移金属錯体の多様で複 雑な電子状態を記述するには、多くの場合は高精度な電子状態計算を必要とするため、限ら れた自由度に対するポテンシャルエネルギー曲線を基にした議論が多い。ダイナミックスの 理解には、自由度を限定する事なく、分子動力学シミュレーションによって直接的に動的過 程も考慮する事が望ましいが、計算コストなどから第一原理シミュレーションで扱える電子 状態は限られている。また、分子動力学シミュレーションで広く用いられるポテンシャルエ ネルギー関数は基底状態を記述するものがほとんどであり、異なるスピン状態も含めた複数 の遷移金属錯体の電子励起状態の記述に適用することは困難である。

そこで上述の[Fe(bpy)₃]²⁺における複数の d-d 励起状態のポテンシャルエネルギー面を記述 するための簡便な有効ハミルトニアンモデルを構築した³⁾。さらに水溶液中における [Fe(bpy)₃]²⁺の1重項低スピン状態と5重項高スピン状態に対する古典分子動力学シミュレー ションを行い、ハミルトニアンモデルの妥当性を検討した³⁾。本ポスターでは、まずこのハ ミルトニアンモデルの詳細について発表する。

さらに実験的に研究されている[Fe(bpy)₃]²⁺水溶液の光励起後のダイナミックスを扱うため には、各スピン状態の安定構造付近のポテンシャルエネルギー面の記述だけではなく、異な るスピン状態のポテンシャルエネルギー面が交差する領域付近などを少なくとも定性的に正 しく記述することが重要と考えられる。そこで、本研究では第一ステップとして、光励起後 に生成される5 重項の準安定状態から基底1 重項状態に緩和する遅い過程に注目し、開発し たハミルトニアンモデルによる1,5重項状態間の交差のseamとスピン軌道相互作用の記述を 調べた。1.5 重項間のスピン軌道相互作用は3 重項を介して値を持つため、3 重項状態とのエ ネルギー関係にも注目した。具体的には5重項の準安定状態での熱平衡を仮定し、エネルギ ー差に対する拘束⁴⁾を課した分子動力学シミュレーションを行うことで、1,5 重項間の交差の seam でのトラジェクトリーを得る。 そしてトラジェクトリー沿いに 1,5 重項と3 重項状態 のエネルギー関係と錯体構造、スピン軌道相互作用を検討することを試みている。サンプル された数点の構造における DFT 計算、CASSCF 計算と比較すると、各スピン状態のエネルギ 一関係とスピン軌道相互作用がハミルトニアンモデルによって少なくとも定性的には妥当に 記述されている事が示唆された。実際の緩和は高温でもトンネルで起こることが指摘されて いるため⁵⁾、さらにダイナミックスの議論につなげるには注意を要するが、ハミルトニアン モデルが安定構造付近だけではなく、広い領域で少なくとも定性的に正しい記述を与えるこ とが示唆される。結果の詳細は当日に発表する。

参考文献

- [1] 例えば Ch. Bressler et al., Science 323, 489 (2009).
- [2] C. de Graaf and C. Sousa, Chem. Eur. J. 16, 4550 (2010), Int. J. Quantum Chem. 111, 3385 (2011).
- [3] S. Iuchi, J. Chem. Phys. 136, 064519 (2012)
- [4] Y. Ogihara, T. Yamamoto, and S. Kato, J. Chem. Theory Comput. 7, 2507 (2011).
- [5] A. Hauser, Top. Curr. Chem. 234, 155 (2004).

2P-099

ゼトレン類のジラジカル性および非線形光学物性に対する 置換基効果の理論的研究

(阪大院基礎工¹, 産総研ユビキタスエネルギー²) 南出 秀¹、鎌田賢司²、太田浩二²、 米田京平1、福田幸太郎1、戸部義人1、中野雅由1

Theoretical study of substituent effect on diradical characters and nonlinear optical properties of

zethrenes

(Osaka Univ., AIST) Shu Minamide, Kenji Kamada, Koji Ohta, Kyohei Yoneda, Kotaro Fukuda, Yoshito Tobe, Masayoshi Nakano

【序】物質にパルスレーザーなど非常に強度の高い光を照射した場合、光電場に対する 非線形な応答、非線形光学(NLO)現象が生じる。従来の NLO 物質探索は閉殻系に基 づくものが殆どであったが、最近、我々は新規 NLO 物質として開殻分子系に着目し、 特に開設一重項分子系で三次 NLO 物性の微視的起源である第二超分極率(y) が開設性 の程度を示すジラジカル因子 y ($0 \le y \le 1$, y=0 で閉殻、y=1 で完全ジラジカル) に対 し強い依存性を示すことを明らかにした[1]。

一方、縮環炭化水素には開殻一重項性を持つものが存在することが予測されており新 規の有機 NLO 分子として近年非常に注目されている。ゼトレン(Fig. 1)はこれまでの 研究で開殻性を持つことが理論的に明らかになったもの一つであり、実際に R₁, R₁'の位 置にドナー(D) 基やアクセプター(A) 基を導入した系が合成されている[2]。我々は それらの二光子吸収(三次 NLO 現象の一つ)の測定を行い、大きな非線形光学物性を 持つことを明らかにした。これまで合成されたゼトレン誘導体の置換位置 (Fig. 1; R₁, R₁' = D or A) に加え、本研究では異なる置換位置にドナー/アクセプター基を導入した対 称開殻一重項系および非対称開殻一重項系 [Fig. 1; R_i, R_i'=D or A (i=2, 3, 4)] について、 ジラジカル因子と三次非線形光学物性に対する置換基効果を解明することを目的とす る。置換位置については HOMO の分布が存在する箇所を選択した(Fig. 2)。

【理論計算】系の構造最適化は B3LYP 法で行い、HOMO、LUMO の軌道エネルギーを LC-RBLYP 法で、長軸(x) 方向成分のyを LC-UBLYP 法で求めた。また y は、x 軸方向 のスピン分極に対応する LC-UBLYP 自然軌道の占有数から算出した。以上の計算では基 底関数として 6-31G*を用いた。全ての計算には Gaussian 09 を使用した。

Fig. 2 HOMO and LUMO of zethrene

【結果と考察】 (R₃, R₃')=(NO₂, NO₂)、(NH₂, NH₂)、(NO₂, NH₂)であるゼトレン誘導体 (それぞれ 3AA、3DD、3DA) に対し理論計算で得られたジラジカル因子 y および第二 超分極率γ、HOMO、LUMO の軌道エネルギーを Table 1 に示す。R₃, R₃'位置換ゼトレン の y は(0.13–0.15)、無置換ゼトレンの値(y = 0.101)に比べ少し増大したが、R₃, R₃'置換ゼ トレン間では大きな変化は見られなかった。

一方、γの大きさについては 3DA>3AA>3DD の順となった。無置換ゼトレンと比較 して DD、AA 共にγが増大しているが、D/A 基導入による交互対称性の破れによる励 起状態間の双極子モーメントの増加が理由と考えられる。また 3DA で最も大きくなって いるが、これは D/A 基まで分布が拡張したγ密度とその値の増大が示すように Charge transfer の効果 (Fig. 3)、つまり非対称性による永久双極子モーメントに起因する寄与が 加わったこと、および HOMO-LUMO エネルギーギャップが小さくなるためであると思 われる。上記の特徴は非対称閉殻系において見られるものであるが、今回のように*y*が 小さなゼトレンでも同様の傾向が見られることがわかった。

詳しい解析結果、他の位置に置換基を導入した系、および中央のアセン骨格を伸ばし 開設性を増大させた系に対する置換基導入効果については当日報告する。

Model	R ₃ , R ₃ '	у	$\gamma/10^4$ a.u.	$\epsilon_{HOMO}/a.u.$	$\epsilon_{LUMO}/a.u.$
zethrene	Н, Н	0.101	30.7	-0.23481	-0.02483
3AA	NO ₂ , NO ₂	0.141	72.5	-0.26362	-0.06794
3DD	NH ₂ , NH ₂	0.131	53.8	-0.21355	-0.01299
3DA	NO ₂ , NH ₂	0.150	110.5	-0.23689	-0.04281

Table 1. Diradical character y, second hyperpolarizability γ, and HOMO/LUMO energies of the models

Fig. 3. y densities of zethrene(left) and 3DA(right).

【参考文献】

[1] M. Nakano et al., J. Phys. Chem. A 109, 885 (2005); M. Nakano et al., Phys. Rev. Lett. 99, 033001 (2007); M. Nakano, et al., Chem. Phys. Lett. 443, 95 (2007); Kamada et al., Angew. Chem. Int. Ed., 46, 3544 (2007).

[2] R. Umeda et al., Org.Lett. 11, 4104 (2009)

2P100

大規模 FMO 計算に向けた GAMESS の並列化

(筑波大) <u>梅田宏明</u>, 佐藤三久

Parallelization of GAMESS for Large-scale FMO calculation

(Univ. Tsukuba) Hiroaki Umeda, Mitsuhisa Sato

序

メニーコアプロセッサなどに象徴される計算機技術の発展に伴い、数万コアを越えるような超並列計 算機が現実的なものとなってきている。このような大規模並列計算機を有効に利用するために、スレッ ドレベルの並列化とプロセスレベルの並列化を組み合わせたハイブリッドな並列化が求められている。 大規模並列計算に適した分子軌道計算手法の一つとしてフラグメント分子軌道法(FMO 法)[1]がある。 FMO 法は巨大なターゲット分子を比較的小さなフラグメントに分割して考え、フラグメント及びフラ グメントペアの計算から全系の分子特性を求める手法であり、個々のフラグメントの計算には大域的 な通信があまり必要ないことから、超並列計算機においても効果的な並列計算が可能であると考えら れている。これまで我々は最新の超並列計算機である京コンピュータ上で GAMESS [2]の FMO 計算 を高速に実行させるための開発を行なってきた。本発表ではこの開発の現状を紹介する。

GAMESS の並列化

GAMESSでは独自の通信レイヤーである Distributed Data Interface (DDI)を用いたプロセスレベル の並列化が行なわれている[3]。一方最近のマルチコア計算機では通信に依るメモリ量の増大や通信速 度の低下等を避けるため1ノードあたり1MPIランクでの並列計算が推奨されている。このため現状 GAMESS に実装されている DDI ではコア数の半分しか計算に使うことができない。我々は ARMCI ライブラリ[4]を利用する DDI 実装を採用し、またノード内並列には OpenMP によるスレッドレベル 並列化を行なうことにより、このようなマルチコア並列計算機での実行を可能とした。OpenMP 化に 際しては GAMESS 本体のコードに OpenMP の指示文を挿入することで実現し、スレッド並列計算専 用にサブルーチン等を新たに作成することはできるだけ避けている。なお、GAMESS の HF 計算等の OpenMP 化については石村らによる発表があり非常に良い成果をあげている[5]。しかしながら彼等の コードは公開を前提としたものではないため、独自に OpenMP 化を実行している。

高並列計算による速度向上に伴い並列化や高速化が不十分なコードへの対応も求められるようになってきている。例えば SCF サイクルごとに実行される波動関数の直交化は、Fock 行列の生成が並列計 算により高速化していくために、SCF の中でボトルネックになってきていた。これについてはブロッ ク化して BLAS の行列積ルーチンを利用することで、ある程度の高速化を図っている。

テスト計算および結果

大規模 FMO 計算のベンチマークテストとして、15,719 原子のモデルタンパクについての FMO/RI-MP2/6-31G(d)+cc-pVDZ 計算を行なった。計算は T2K 筑波システム(4 Quad-core Opteron プロセッサ, 32GB メモリ/ノード, 640 ノード)の全ノード(10,240 コア)を用いて行ない、改良版 GAMESS を flat MPI モデルと OpenMP/MPI ハイブリッドモデルで実行し、性能を比較した。Fig.1 に全体および各計算段階に対する経過時間を示した。OpenMP/MPI ハイブリッド並列化により大規模 計算で問題となる通信や I/O への負荷が低くなり、全体として性能が向上していることがわかる。ま たFMO/MP2計算の各部分についても性能が向上しており、我々の行なった OpenMP/MPI ハイブリッ ド並列化がこれら全てのルーチンで有効に機能していることがわかる。

Fig.1. Elapsed time for FMO/MP2 calculation using 10k core of T2K-Tsukuba system. Blue and red bar represents flat MPI execution model (16 process/node) and OpenMP/MPI hybrid execution model (4thread*4process/node), respectively. Here, relaxed convergence thresholds are applied for SCF and SCC calculations to reduce benchmark time.

[1] Kitaura, K.; Sawai, T.; Asada, T.; Nakano, T.; Uebayasi, M. Chem Phys Lett 1999, 312, 319.

[2] GAMESS (General Atomic and Molecular Electronic Structure System),

http://www.msg.chem.iastate.edu/gamess/

[3] Fedorov, D. G.; Olson, R. M.; Kitaura, K.; Gordon, M. S.; Koseki, S. J Comput Chem 2004, 25, 872.

[4] Aggregate Remote Memory Copy Interface (ARMCI),

http://www.emsl.pnl.gov/docs/parsoft/armci/index.html

[5] Ishimura, K.; Kuramoto, K.; Ikuta, Y.; Hyodo, S.-a. J Chem Theory Comput 2010, 6, 1075.