3P098

Poisson-Boltzmann 方程式に基づいた連続溶媒モデルの FMO 法 への実装と応用計算

(東大生産研¹, 国立衛生研², 立教大理³, 神戸大院シス情⁴) 〇沖山 佳生¹, 中野 達也^{1,2}, 望月 祐志^{1,3}, 田中 成典⁴

【序論】フラグメント分子軌道法 (FMO 法)[1] を用いて、これまで様々なタンパク質などの大規 模生体分子系の計算が行われて来た [2]。一方、気相中における計算例が多く、水溶液中などの 外場を含む計算例はまだ少ない。特に、タンパク質の立体構造情報に基づく薬剤設計 (Structure Based Drug Design: SBDD) においては、周囲を溶媒に取り囲まれた生理条件化での第一原 理計算による評価が重要となる。近年の計算機環境の向上に伴い様々な大規模計算が可能と なる一方で、対象分子の周囲に露に水分子を配置させた精密な計算では、計算対象自体の規 模が増大すると同時に、統計量を得るための十分なアンサンブル計算が必要となる。そこで、 Polarizable Continuum Model (PCM) 法を初めとする誘電体モデルによって簡便に溶媒効果を 取り込む方法論が用いられており、Fedorov らによる FMO 法との連携も進められている [3]。 特に Poission-Bolztmann (PB) 方程式を用いた溶媒モデルではイオンによる効果を Boltzmann 分布に基づいて取り込むことができるため、より生理条件に近いモデル化が可能である。こう した背景のもと、渡邉らは FMO 計算プログラム ABINIT-MP(X)[4,5] と PB 方程式解法プロ グラム DelPhi[6] とを組み合わせ、タンパク質計算への溶媒効果の取り込みを行った [7]。ただ、 そのスクリプトベースによる計算スキーム (図 1(A)) では、ファイル入出力によるデータ受け渡 しが必要となるため、扱いが煩雑で移植性にも困難を伴う。そこで今回、FMO 法に基づく静電 ポテンシャル (ESP) フィッティング計算モジュールを開発し、ESP 電荷計算機能 (図 1(A) の CPF2DEN と RESP/AMBER の機能に相当)の ABINIT-MP(X) への内蔵化とともに、溶媒効 果を取り込むための計算モジュールの整備を行った (図 1(B))。また、実タンパク質系を用いた 実証計算も行った。

図 1: 溶媒効果を取り込むための実装

【方法】Tanner らの定式化 [8] では、溶媒和エネルギーにおける静電的な寄与が

$$\Delta G^{\rm es} = \langle \psi^{\rm s} | H^0 | \psi^{\rm s} \rangle - \langle \psi^{\rm g} | H^0 | \psi^{\rm g} \rangle + \frac{1}{2} \left[\langle \psi^{\rm s} | H' | \psi^{\rm s} \rangle + H'' \right] \tag{1}$$

で与えられる (H^0 :気相の Hamiltonian, H':表面電荷に対する一電子 Hamiltonian, H'':表 面電荷と原子核間の Coulomb 相互作用, ψ^g :気相での溶質波動関数, ψ^s :液相での溶質波動関 数)。溶媒による溶質の波動関数への影響は、溶質分子の周囲に置かれた表面電荷で再現され、ま たその分子表面における ESP を決定する PB 方程式への溶質からの寄与は、原子上に置かれた ESP 電荷で与えられるため、この溶質電荷と表面電荷の間で自己無撞着となるように反復計算 を行う。

【結果と考察】ここでは α-helix 型の (Ala)₅ を用いたフラグメント間相互作用エネルギー (IFIE) と電荷分布に関する計算例を紹介する。計算レベルは HF/6-31G*であり、溶媒の分極率を 80.0、 溶質の分極率を 1.0 として溶媒の影響を見積もった。フラグメント間相互作用エネルギー (IFIE) を調べると、溶媒効果によって数 kcal/mol の変化が見られ、特に距離の離れたフラグメント間 (1 と 5) ではその静電相互作用が緩和された (表 1)。また、フラグメントごとの電荷分布の変化 からは、C 末端 (フラグメント 5) から N 末端 (フラグメント 1) へ分極する描像が得られた (表 2)。その他の計算例並びに詳細は当日ポスターセッションで報告する。

表 1: (Ala)₅ における IFIE の溶媒の有無による変化

フラグメントペア			IFIE [kcal/mol]			
番号 (形式電荷 [e])		距離 [Å]	溶媒なし	溶媒あり	Δ	
1(+1)	3(0)	3.3	5.9	11.1	5.3	
1 (+1)	4 (0)	3.2	5.9	9.9	4.0	
1 (+1)	5(-1)	4.2	-31.3	-26.1	5.2	
2(0)	4(0)	2.2	-1.8	-4.2	-2.4	
2(0)	5(-1)	2.1	0.0	-3.0	-3.0	
3(0)	5(-1)	2.7	8.1	14.5	6.4	

表 2: (Ala)₅ における電荷分布の溶媒の有無による変化

フラグメント		Mulliken[e]			Merz-Kollman[e]		
番号	溶媒なし	溶媒あり	Δ	溶媒なし	溶媒あり	Δ	
1	0.852	0.978	0.126	0.879	0.994	0.115	
2	0.099	0.106	0.008	-0.022	0.015	0.037	
3	0.025	0.013	-0.011	0.018	0.022	0.004	
4	-0.068	-0.059	0.009	-0.092	-0.044	0.049	
5	-0.907	-1.039	-0.131	-0.782	-0.987	-0.205	

【謝辞】本研究は東大生産研 RISS プロジェクトの支援のもとで行われている。

【参考文献】[1] K. Kitaura, et al., Chem. Phys. Lett., **312** (1999) 319. [2] D. G. Fedorov, K. Kitaura, J. Phys. Chem. A **111** (2007) 6904. [3] D. G. Fedorov et al., J. Comp. Chem., **27** (2006) 976. [4] T. Nakano, et al., Chem. Phys. Lett. **351** (2002) 475. [5] Y. Mochizuki, et al., Chem. Phys. Lett. **457** (2008) 396. [6] W. Roccia, et al., J. Phys. Chem. B **105** (2001) 6507. [7] H. Watanabe, et al., Chem. Phys. Lett., **500** (2010) 116. [8] D. J. Tannor et al., J. Am. Chem. Soc., **116** (1994) 11875.