2P032

ヨウ化 TTP ドナーを用いたラジカル塩の構造と物性

(首都大院理エ¹・兵庫県立大院・物質理²)

○磯 大介¹, 吉本 治男¹, 藤田 渉¹, 兒玉 健¹, 菊地 耕一¹, 山田 順一²

我々は、BDT-TTPとBDA-TTPやBDH-TTPの両骨格を有し、 置換基としてヨウ素を付加した図1のドナーを用いて、新たな有 機超伝導体の開発を目的に研究を行っている.これまでに得ら れたラジカル塩を表1にまとめる.

結晶構造解析より、置換基にヨウ素原子を加えたことで、 DTDH-TTPに見られたdisorderを除去できた.ドナーのヨウ素 原子とアニオンとのハロゲン相互作用によって、ドナーの配列

をDAはドナー分子の向きが交互になるよう に、DHは同じ向きになるように制御でき た.DAの向きが交互である理由はジチアン環 による立体反発により積層が阻害されたこ とによるものと考えられ、DAの正八面体型 アニオンとの塩は粉末しか得られない要因 でもあると考えられる.(DH)2PF6, (DA)2GaCl4におけるそれぞれのドナーの配

列,フェルミ面を図2に示す. $(DH)_2PF_6$ の

フェルミ面は閉じたフェル ミ面が存在し、二次的な電子 構造である.その結果、常温 で高い伝導度を有し、極低温 まで金属的伝導挙動に示す. (DA)₂GaCl₄は、常温での電

気伝導度が低く、フェルミ面 が一次的であるため、金属絶 縁体転移が起きる.一方、3:1 塩である(DH)₃FeCl₄はこれ までの実験では常圧におけ る転移温度など不明瞭な点 があったため、再測定を行う とともに電子状態との関連 を検討した.

図 1

衣⊥			
	D:A	$\sigma_{\rm RT}({\rm Scm}^{-1})$	伝導挙動
$(DH)_2PF_6$	2:1	230	4.2 K まで金属的
$(DH)_2SbF_6$	2:1	190	4.2 K まで金属的
(DH) ₃ FeCl ₄	3:1	40	T _{MI} (230 K)
$(DH)I_3$	1:1	2.2×10^{-3}	絶縁体
(DA) ₂ FeCl ₄	2:1	7.9	T _{MI} (100 K)
(DA) ₂ GaCl ₄	2:1	8.7	T _{MI} (110 K)

p1 = 17.7, p2 = 20.7, r1 = -5.16, r2 = 0.05, r3 = -0.25 (×10⁻³)図 2 (DH)₂PF₆ と(DA)₂GaCl₄ のドナーの配列, フェルミ面

今回測定した(DH)₃FeCl₄の伝導度測定の結果を図 3に示す. (DH)₃FeCl₄における金属絶縁体転移温度 は220 Kであり, 6 kbarの圧力下ではその転移が抑 制されることを明らかにした.

(DH)₃FeCl₄塩のドナーの配列, バンド構造, フ ェルミ面を図4に示す. (DH)₃FeCl₄はカラム間方向 の相互作用が強いため,小さな正孔を有し,特徴 的な電子構造を有している.静水圧下での電子状 態を考えるため,6kbarの圧力下では結晶の体積が 5%縮むと仮定し,ドナーのHOMOは常圧のまま で,格子を変化せることにより,分子間距離を変 化させ,バンド構造を計算し,フェルミ面を求め た.(図5) その結果,カラム間の重なり積分が消 失し,1次元的なフェルミ面になった.このフェ ルミ面では,低温で金属絶縁体転移が起こりや すいと考えられるが,実際の6kbarにおける伝 導挙動の結果は異なる.このため,今後圧力下 での構造解析を行い,電子状態の解明が必要で ある.

(DH)₃FeCl₄は特有の電子構造を有するので, 異方的に圧力をかけた場合,電子構造がどのよ うに変化するか興味深い.そこでカラム方向な らびカラム間方向の分子間距離をそれぞれ縮め た場合におけるバンド構造の計算を試みた.

カラム方向を縮めた場合, カラム間の重なり 積分が消失し, 圧力により正孔がなくなり, 1次 元的なフェルミ面になった. 一方, カラム間方 向を縮めた場合, カラム間の重なり積分が強く なり, Y方向の正孔が大きくなった. これら結果 からすると一軸圧においても物性が大きく変化 することが期待され, これから一軸圧における 物性研究を行う予定である.

図 5 体積 5 %減少した(DH)₃FeCl₄のフェルミ面