CO とプロピレンオキシド錯体のフーリエ変換マイクロ分光

(神奈川工大*·総研大**)〇水野英成*·川嶋良章*·廣田榮治**

【序】プロピレンオキシド(PO) 錯体では、結合する相手が占める配置に syn, anti の 2 種の 可能性がある。希ガスでは anti に近い構造、 $H_2O \approx C_2H_5OH$ では syn と anti の 2 種類の構造 が報告されている。昨年、フーリエ変換マイクロ波(FTMW)分光により CO₂–PO 錯体の回 転スペクトルを測定し、anti が安定構造であることを報告した。また、PO のメチル基内部回 転障壁 $V_3 \approx 857.4 \text{cm}^{-1}$ と決定し、PO 単量体の値より約 12%小さいという結果をえた。今回 CO-PO 錯体(図 1)を取り上げ、FTMW分光によって分子間距離や分子間結合エネルギー E_B を求め ab initio 計算の結果と比較するとともに、さらに NBO (Natural Bond Orbital) 解析によ り結合エネルギーや安定な立体配置を検討して、類似分子の場合と比較したので報告する。

Fig.1 Two conformers of CO-PO complex.

【実験】市販の CO と PO をアルゴンで、それぞれ 0.7%と 1.3%に混合希釈し、背圧 3atm で 分子線噴出ノズルから真空チャンバー内に導入した。6~20 GHz の周波数領域を 0.25 MHz ご とに 20 回積算した。精密測定では積算回数を 50~500 回とした。

【結果と考察】掃引周波数領域に検出した多数の吸収線から PO 単量体と Ar-PO 錯体による ものを除き、残った吸収線を CO-PO 錯体に帰属した。10.8 GHz 近辺に現れた $a ext{ } (K_c = 4 \leftarrow 3)$ 遷移を手がかりに $a ext{ } 型遷移 26 ext{ } c ext{ } 型遷移 5 ext{ } 本を帰属した。また <math>b ext{ } 型遷移は観測されなか$ った。測定したスペクトルにはメチル基内部回転による分裂が見られた。最初に非対称コマ 分子の回転ハミルトニアンを用い、最小二乗法により内部回転 $A ext{ } t ext{ } t$

MP2/6-311++G(d、p)により計算した座標から CO および PO の重心間距離 R_{cm}を、スペクト

ル解析からえた回転定数および遠心力歪定数を用いて力の定数 k_s とLennard-Jones ポテンシャル仮定による結合エネルギー E_B を求めた。関連類似錯体についての結果ともに表2に示す。 CO-POの力の定数や結合エネルギーの値はCO-エチレンオキサイド(EO)やCO-エチレンスルフィド(ES)の値とよく一致していることがわかる。

MP2/6-311++G(d,p)を用い、ゼロ点振動に対する補正 Δ ZPV と基底関数重ね合わせ誤差 (BSSE)によるカウンターポイズ補正(CP)を行って CO-PO についてえた結合エネルギー の計算値 D_0 +50% CP、4.9kJmol⁻¹、は実験値とよく一致している。つぎに、NBO 解析を

行い、錯体間の電荷移動(ドナー・アクセ³⁰ プター相互作用)による安定化エネルギー²⁵ *CT*を2次の摂動計算でもとめた。この²⁰ 安定化エネルギーの値は9.4kJmol⁻¹と計算¹⁵ され、類似錯体では実験値 E_B と安定化エ¹⁰ ネルギー*CT*には良い相関関係(相関係数 0.912)があることがわかった(図 2)。⁵

		<i>ab initio</i> Calculation					
Experimental	Anti			anti	S	yn	
A/MHz	8489.029 (12)	A/MI	Hz 8	3384.992	2 5922.	626	
<i>B</i> /MHz	1395.0661 (25)	<i>B</i> /Mł	Hz 1	426.350) 1667.	388	
C/MHz	1317.1887 (20)	C/MI	Hz 1	351.614	4 1475.	201	
D_J/kHz	3.6224 (14)	μa /D)	1.813	3 -2.	181	
D_{JK} /kHz	-16.462 (13)	μ <i>b</i> / D)	0.393	3 0.	518	
d_1 /kHz	-0.4282 (16)	$\mu c / \mathbf{D}$	1	2.172	2 1.	789	
d_2 /kHz	-0.0126 (13)	$\Delta E / c$	cm^{-1}	0	12	27	
N(a-type)	26	Table 2 Distance R_{cm} , force constant k_s and bond					
N(b-type)	-	energy E_B of containing CO ₂ and CO.					
N(c-type)	5				$R_{\rm cm}$ /Å	k_s/Nm^{-1}	E_B/kJmol^{-1}
θ_{a}	67.11		CO ₂ -ES		3.47	6.9	7.0
θ_{b}	103.48		CO ₂ -EO		3.26	8.0	7.1
θ_{c}	26.97		CO ₂ -PO(<i>anti</i>)		3.47	4.6	4.8
F_0 /MHz	160.949		CO-ES		3.80	3.2	3.9
V_{3}/cm^{-1}	869.33 (88)		CO-EO		3.61	3.3	3.6
σ/kHz	4.1		CO-PO(a	unti)	3.92	2.7	3.4

Table 1. Observed rotational constants of CO-PO, compared with those calculated by an *ab initio* MO method.