多核原子内包フラーレン

- 紫外光電子スペクトルと構造・電子状態(VIII) -

(愛媛大院・理工、分子研、名大院・理)

宫崎隆文、中西勇介、西 龍彦、大北壮祐、八木 創、篠原久典、日野照純

我々はこれまでにフラーレンケージ内に複数原子を取り込んだ内包フラーレンの紫外光 電子スペクトル(UPS)を測定して内包フラーレンの電子状態や内包金属種の電荷状態を 調べてきた。また、密度汎関数による理論計算から得られたシュミレーションスペクトル と比較することにより、内包フラーレンの電子構造や内包原子からケージへの電荷移動 に関する知見を明らかにし、さらに内包原子団の構造についての情報を得てきた。その 結果、内包フラーレンの電子状態は内包される原子または原子団には余り依存せず、主 としてフラーレンケージの構造や内包原子の酸化状態によって決定されるという経験 則を見出した[1]。今回の報告では $Lu_2 \approx Lu_2C_2$ が C_{84} ケージに内包された $Lu_2@C_{84}$ と $Lu_2C_2@C_{84}$ の UPS 測定結果を示し、これまでに測定された C_{80} ケージおよび C_{82} ケージに Lu が内包されたフラーレンの UPS と比較し、これら内包フラーレンの電子状態や内包種の 酸化状態について議論する。

C84 ケージには孤立五員環則(IPR)に従う24 種類の構造異性体が知られている。今回測 定した Lu2@C84 と Lu2C2@C84 のケージの対称性は NMR 構造解析からそれぞれ C2v と *D*_{2d}である。Lu₂@C₈₄-C_{2v}とLu₂C₂@C₈₄-D_{2d}の20~60 eVの光励起による紫外光電子スペ クトルを図 1、2 にそれぞれ示す。いずれの内包フラーレンでも励起光エネルギー変化に よる UPS の強度振動が観測された。これらのスペクトルで結合エネルギーが 0~5 eV の範 囲に観測される構造はπ電子によるものであり、5 eV より深い領域にある構造は主として 炭素原子骨格を作る σ 電子によるものである。5 eV より深い部分は M@C₈₂、M2@C₈₂、 M₂C₂@C₈₂(M=Y, Er, Lu) などの内包 C₈₂フラーレンの UPS と非常に類似していることか らフラーレン骨格を形成する σ 電子構造は内包 C₈₄フラーレンでもそれらと大差ないと思わ れる。一方、π電子に由来する領域のスペクトルの形状は互いに異なっており、Lu2@C84-C2v とLu₂C₂@C₈₄-D_{2d}のUPS開始点(E_{onset})ではそれぞれ0.7 eVと1.0 eVである。図3に はhv = 40 eVで測定した $Lu_2@C_{80}$ 、 $Lu_2C_2@C_{80}$ 、 $Lu_2@C_{82}$ 、 $Lu_2C_2@C_{82}$ 、 $Lu_2@C_{84}$ 、 $Lu_2C_2@C_{84}$ の UPS を示す。同じ原子団を内包しているが、ケージ炭素数が異なる Lu₂@C₈₀-C_{2v}、 Lu₂@C₈₂-C_{2v}とLu₂@C₈₄-C_{2v}およびLu₂C₂@C₈₀-C_{2v}とLu₂C₂@C₈₄-D_{2d}と の比較では互いの π 電子構造に類似性は認められない。また、Lu4f_{7/2} と Lu4f_{5/2} 準位と考え られる構造がLu₂C₂@C₈₂-C_{2v}では9.6 eVと11.1 eV、Lu₂C₂@C₈₄-D_{2d}では9.2 eVと10.7 eV にそれぞれ観測され、特に、Lu₂C₂@C₈₄-D_{2d}ではLu4f準位の強度がLu₂@C₈₄-C_{2v}より明ら かに大きくなっている。表1にはLu内包 C_{80} 、 C_{82} 、 C_{84} フラーレンの E_{onset} とLu4f_{7/2}とLu4f_{5/2} 準位の結合エネルギーをまとめた。これらの準位は C_2 を内包したフラーレンの方が、内包 しないものより 0.3~0.4 eV ほど浅い。このことは C_2 を内包することにより Lu 上の電子分 布が多くなっている事に対応する。この原因としては、Lu 原子と C_2 との軌道の混成などが 考えられる。この点をさらに明らかにするために内包された Lu と C_2 との相互作用を考慮 できるされに精度の高い理論計算が望まれる。

図 1. Lu2@C₈₄-C_{2v}の UPS (hv=20~60 eV)

図 3. Lu 内包 C₈₀, C₈₂, C₈₄ フラーレンの UPS

図 2. Lu₂C₂@C₈₄-C_{2d}のUPS (hv=20~40eV)

表 1. Lu 内包 C₈₀、C₈₂、C₈₄フラーレンの UPS(hv= 40eV)から得られた測定値

	E _{onset}	Lu4f _{7/2}	Lu4f _{5/2}
Lu ₂ @C ₈₀₋ C _{2v}	0.62	9.6	10.9
Lu ₂ C ₂ @C80-C _{2v}	0.73	9.5	10.6
Lu ₂ @C ₈₂ -C _{2v}	0.60	9.7	11.1
Lu ₂ C ₂ @C ₈₂ -C _{2v}	0.87	9.4	10.8
Lu ₂ @C ₈₄ -C _{2v}	0.68	9.6	11.1
Lu ₂ C ₂ @C ₈₄ -D _{3d}	1.01	9.2	10.7

[参考文献] [1] 宮崎 他, 分子科学討論会 2009, 3D08; 宮崎 他, 分子科学討論会 2010, 4D03 T. Miyazaki et al, Chem. Phys, 378, 11-13 (2010).