
## Au<sub>10</sub>と金属塩の反応

(茨城大・理<sup>[1]</sup>、北海道大・触媒化学研究センター<sup>[2]</sup>、(株)リガク・アプリケーション・ソフトウェア開発部<sup>[3]</sup>) ○大沼沙織<sup>[1]</sup>、幕内悦予<sup>[1]</sup>、角山寛規<sup>[2]</sup>、佃達哉<sup>[2]</sup>、佐々木明登<sup>[3]</sup>、泉岡明<sup>[1]</sup>

【序】最近、サブナノメータクラスの金クラスターの構造や反応についての報告が数多くなされている。今回我々は、トリフェニルホスフィン(TPP)を配位子とした  $Au_{11}$ クラスターの調製時に、比較的安定な  $Au_{10}$ クラスターが存在することを  $^1H$ -NMR スペクトルや ESI-Mass 測定によって確認した。また、単離した  $Au_{10}$ クラスターと金属塩を反応させることによって、 $Au_{11}$ や  $AgAu_{10}$ が生成することを報告する。

【実験】Au<sub>10</sub>クラスターは、塩化メチレン・メタノール混合溶媒中でTPPAuClを1当量の水素化ホウ素ナトリウムで還元することにより得た。溶媒を留去し、アセトン中で1時間静置後、得られた沈殿を塩化メチレン・ヘキサン混合溶媒で洗浄した。得られた生成物の組成は、塩化メチレン溶媒を用いてESI-Mass測定により帰属した。

【結果と考察】生成物の ESI-Mass 測定により、4100(m/z)に強度の大きいポジティブイオンピークが観測された(図 1)。解析の結果、このシグナルは  $[TPP_8Au_{10}Cl]$ +(4101.4)の組成をもつクラス



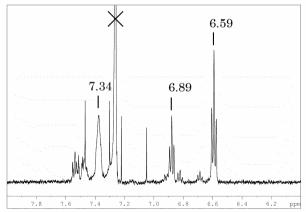



図 1  $Au_{10}$  クラスターの ESI-Mass スペクトル 図 2  $Au_{10}$  クラスターの  $^1$ H-NMR スペクトル

ターによるものであると帰属された。さらに、4338(m/z)に強度の小さなポジティブイオンピークが観測され、この組成は[TPP $_8$ Au $_{11}$ Cl $_2$ ]+(4333.3)であると同定した。生成物の  $^1$ H-NMR スペクトルはほぼ 1 種類のクラスターに由来するシグナルを示した(図  $_2$ )。  $\delta$  = 6.59、6.89、7.34ppm の吸収は、それぞれ  $_2$  か位のフェニル水素と帰属した。 $_3$  が近の一連のシグナルは原料の TPPAuCl によるものである。

還元反応の粗生成物をクロロホルム中で室温 20 時間撹拌すると  $Au_{10}$ の減少に伴って TPPAuCl と  $Au_{11}$  に変化することが NMR スペクトルを追跡することにより明らかになった。  $Au_{11}$  クラスターはマススペクトルが 4338(m/z)にポジティブイオンピークを示したことにより確認した。 また、この試料のネガティブイオンピークは 268(m/z)に観測され、その組成は  $[AuCl_2]^-(266.9m/z)$ であると帰属された。これより、生成した  $Au_{11}$  クラスターの組成は  $[TPP_8Au_{11}Cl_2]^+[AuCl_2]^-$ と同

定できた。

一方、この  $Au_{10}$  クラスターの塩化メチレン溶液に  $Et_4NAuCl_2$  を添加すると TPPAuCl をほとんど副成せず短時間でほぼすべての  $Au_{10}$  が  $Au_{11}$  クラスターに変化した。 反応後の  $^1H$ -NMR スペ

クトル( $\delta$  = 6.68、6.93、7.30ppm)を図 3 に示した。このことから  $Au_{10}$  クラスターは[ $AuCl_2$ ] こと反応し、AuCl がクラスター内に組み込まれることによって安定な  $Au_{11}$  クラスターが生成したと考えられる。

この方法を利用し、 $AgAu_{10}$  クラスターの調製を試みた。 $Au_{10}$  クラスターの塩化メチレン溶液に 1 当量の  $TPPAgNO_3$  を添加したところ、反応生成物の  $^1H$ -NMR は、 $Au_{11}$  クラスターの化学シフトとわずかに異なるスペクトル( $\delta$  = 6.70、6.93、7.28ppm)が観測された。 $AgAu_{10}$ 、 $Au_{11}$ 、 $Au_{10}$  クラスターの UV-vis 吸収スペクト




図 3 Au<sub>10</sub>クラスターから Au<sub>11</sub>クラスターへの 変化後の <sup>1</sup>H-NMR スペクトル

ルを図4に示す。これらのクラスターは、それぞれ413、414、421nm に吸収極大をもつことが

わかった。AgAu<sub>10</sub>の NMR や吸収スペクトル が Au<sub>11</sub> クラスターのス ペクトルに類似してい ることから AgAu<sub>10</sub>の構 造は Au<sub>11</sub> の 1 つの金原 子が銀原子に置き換わ った構造をしているも のと考えられる。最近、 バイメタルクラスター として PdAu24 クラスタ ーが Pd 塩と Au 塩の混 合物を還元することに より単離されている。1) 一方、今回の我々の実 験結果は Au<sub>10</sub> クラスタ ーと異種金属塩(MX)と

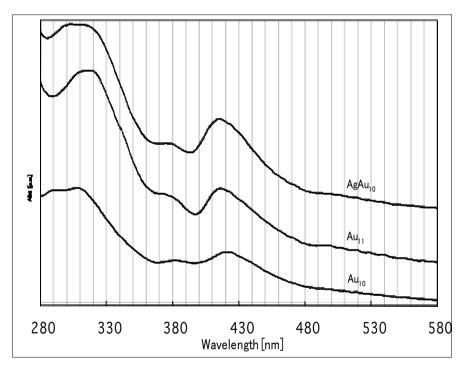



図 4 生成物の UV-vis 吸収スペクトル (solv. CH<sub>2</sub>Cl<sub>2</sub>)

の反応により選択的に MAu<sub>10</sub> クラスターを得る一般的方法論となり得る事を示唆しており、バイメタルクラスターの新たな調製法として提示したい。他の金属塩との反応についても報告する予定である。