4P074

金属置換したバクテリオクロロフィルのフェムト秒分光

大阪市立大学理¹, *CREST/JST*², 京都大エネルギー理工学研究所³, 大阪市大·複合先端研究機構⁴

小澄大輔^{1,2},中川勝統³,丸田聡^{1,2},楠本利行^{1,2},藤井律子^{1,2,4},杉崎満^{1,2},南後守^{1,2}, 橋本秀樹^{1,2,4}

【序論】 バクテリオクロロフィル a 分子は、細菌類の光合成において重要な光機能を果た す。まず、光合成アンテナ複合体において、バクテリオクロロフィル a 分子は光捕集を行うと 同時に、色素分子間の高効率なエネルギー伝達を行うための機能を備えている。また、光 合成反応中心では、アンテナ複合体により集光された光エネルギーをバクテリオクロロフィ ル a の 2 量体 (スペシャルペア)が受け取り、光電変換に必要な一連の電荷分離反応を行 っている。このように、細菌類の光合成器官において、バクテリオクロロフィル a の光機能は 多様であることが知られているが、分子としての光学特性に関する知見は十分ではない。 バクテリオクロロフィル *a* の励起状態は、4 つのπ-π*軌道の重ね合わせにより、2 つの O band (Q_v, Q_x)及び、2つの Soret band (B_x, B_v)で記述される。Q band は可視から近赤外領域 に、Soret band は近紫外領域に吸収帯を持つ。単量体におけるバクテリオクロロフィル aの Q、状態は、基底状態と理想的な2準位系を作り、紅色細菌類の光合成器官では、バクテリ オクロロフィル a 分子が、リング状会合体を形成することにより、Q、状態は励起子的な振る 舞いを示す。そのため、バクテリオクロロフィルaのQ、ダイナミクスに関する研究は、非常に 活発に行われている。一方、Q、については、光合成における高効率なエネルギー伝達にお ける受容体としての役割を果たしているにもかかわらず、そのダイナミクスに関する知見は 乏しい。また近年、技術的に困難であったバクテリオクロロフィル a における中心金属の置 換法が確立され、中心金属とバクテリオクロロフィル a の光学特性の関連性が注目されて いる¹。本研究では、バクテリオクロロフィル a における Q_x励起状態のダイナミクスを明ら かにすることを目的とした。特に、バクテリオクロロフィル a の中心金属と Q_x状態のダイナミ クスの関連について着目した。

【実験】本研究では、天然及び金属置換したバ クテリオクロロフィル a のフェムト秒時間分解吸 収測定を行った。バクテリオクロロフィル a の金 属置換は、文献と同様の手法で行った¹。励起 光は、チタン・サファイアレーザーの基本波及び、 光パラメトリック増幅器からの出力光を用い、バ クテリオクロロフィルaの O_x 及び O_x への共鳴励 起をおこなった。検索光には広帯域白色光を用 い、分光器で分光した後に1024 チャンネルのフ ォトダイオードアレイ(PDA)で検出した。励起光 はレーザーのパルス繰り返し(1kHz)と同期した チョッパーで 500Hz の強度変調をかけた。さらに PDA の読み込みとレーザーのクロックを同期さ せることで、励起/非励起後の検索光強度を 1ms 毎に読み込み、ノイズレベルが 10⁻⁴ 以下の高感 度な検出を実現した²。

図 1 アセトン溶液中における(天然)バクテリオ クロロフィル *a* 及び Zn に金属置換したバクテリ オクロロフィル *a* の定常吸収スペクトル。内挿 図はバクテリオクロロフィル *a* の化学構造。

【結果と考察】 図1は、天然及び、中心金属 Mg を Zn に置換したバクテリオクロロフィル *a* の定常吸収スペクトルを示す。Qy 及び Qx 帯に 着目すると、金属置換に対して Qy 帯のエネル ギーはほとんど変化していないのに対し、Qx 帯は大きくエネルギーシフトしている。

図2に、アセトン中におけるバクテリオクロロ フィルaの Q_x 及び Q_x 帯を励起した後の光誘起 吸収変化スペクトルを示す。光誘起吸収スペク トルには、可視領域全体に渡る幅広い過渡吸 収信号とQx及びQx吸収帯に対応する退色信 号が観測された。幅広い過渡吸収信号は、Q_v 状態から高い励起状態への遷移に相当する 光励起直後 (0.1 ps)では、Qx 及び Qx 励起によ る光誘起吸収スペクトルに大きな違いが見ら れた。特に顕著な違いが観測されたのが、Qx 退色近辺の信号である。Q、励起の場合にのみ 強い負の信号が現れていることから、この信号 の起源は Q_xからの誘導放出であることが考え られる。また、この誘導放出信号は、光励起後 1 ps では消失していることから、Qx の寿命は非 常に短いことが推察される。

図 3 に、Q_y 過渡吸収信号及び、Q_x 退色/誘 導放出信号の時間依存性を示す。Q_y 励起後 には、過渡吸収信号が瞬時に立ち上がってい るのに対し、Q_x 励起の場合には Q_y 過渡吸収 信号が指数関数的に立ち上がっている。また、 Q_x 励起の場合にのみ、誘導放出による超高速 応答が存在することがわかる。Q_x 励起後の過 渡吸収信号及び、Q_x による誘導放出信号の減 衰時間から、Q_x 状態の寿命は 50 fs であること がわかった。

図 2 アセトン中のバクテリオクロロフィル a に おける Q_x 及び Q_y 励起後の光誘起吸収スペクト ル。

図 3 アセトン中のバクテリオクロロフィル *a* に おける Q_x 及び Q_y 励起後の過渡吸収信号の時 間応答。

【まとめ】本研究から、バクテリオクロロフィル a における Q_x 状態の超高速ダイナミクスが 明らかになった。中心金属置換効果と励起状態ダイナミクスの関連については、分子軌道 計算の結果とあわせて報告する。

- ¹ G. Hartwich, L. Fiedor, I. Simonin, E. Cmiel, W. Schafer, D. Noy, A. Scherz, and H. Scheer, J. Am. Chem. Soc. **120**, 3675 (1998).
- ² D. Kosumi, K. Abe, H. Karasawa, M. Fujiwara, R. J. Cogdell, H. Hashimoto, and M. Yoshizawa, Chem. Phys. **373**, 33 (2010).
- ³ C. Musewald, G. Hartwich, F. Pollinger-Dammer, H. Lossau, H. Scheer, and M. E. Michel-Beyerle, J. Phys. Chem. B **102**, 8336 (1998).