極性非対称コマ分子に対する3次元配向制御レーザー場の理論的設計

(慶大院理工) ○加藤 大輝, 菅原 道彦, 藪下 聡

[序] 気相中でランダムな方向を向いている分子を空間固定座標に揃えることができれば、立体化学が関係する反応機構の詳細を明らかにし、高い生成物選択性を実現することができる。これまでの研究により、レーザー照射終了後の無摂動環境下で、極性直線分子や極性対称コマ分子を理論的に実験室配向させることができた。そこで本研究では、より運動法則の複雑な極性分子である極性非対称コマ分子を対象として、未だ成功例のない上記のような<u>共鳴的</u>な配向制御を可能にするレーザー場の設計を行った。この際、従来の大域的な制御理論^[1]を利用した設計手法に比べて計算時間を短縮できる局所最適化理論を適用した。

[理論] 双極子モーメント μ を持つ極性非対称コマ分子とレーザー電場 E(t)の双極子相互作 用 $V_1(t)$ は、次式のようになる^[2]。

$$V_{1}(t) = -\boldsymbol{E}(t) \cdot \boldsymbol{\mu} = -(\boldsymbol{u}_{X}(t) \quad \boldsymbol{u}_{Y}(t) \quad \boldsymbol{u}_{Z}(t)) \begin{pmatrix} \Phi_{Xx} & \Phi_{Xy} & \Phi_{Xz} \\ \Phi_{Yx} & \Phi_{Yy} & \Phi_{Yz} \\ \Phi_{Zx} & \Phi_{Zy} & \Phi_{Zz} \end{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{x} \\ \boldsymbol{\mu}_{y} \\ \boldsymbol{\mu}_{z} \end{pmatrix}$$
(1)
$$(\equiv V_{X}\boldsymbol{u}_{X}(t) + V_{Y}\boldsymbol{u}_{Y}(t) + V_{Z}\boldsymbol{u}_{Z}(t))$$

ここで、 $u_F(t)$ は E(t)の空間固定座標軸 $F(\in \{X, Y, Z\})$ への射影成分, μ_g は μ の分子固定座標軸 g $(\in \{x, y, z\})$ への射影成分, Φ_{Fg} は F 軸の g 軸に対する方向余弦である。シュレディンガー方程式は、

$$\partial_{t} |\psi(t)\rangle = -i \left(H_{0} + \sum_{\mathbf{F}=\mathbf{X},\mathbf{Y},\mathbf{Z}} V_{\mathbf{F}} u_{\mathbf{F}}(t) \right) \psi(t) \rangle.$$
⁽²⁾

ここで、 H_0 は無外場条件下のハミルトニアンである。対象となる分子は、3 軸配向演算子 Φ (=($\Phi_{xx} + \Phi_{yy} + \Phi_{Zz}$)/3)の期待値が大きいほど、実験室系に配向する。そこで $\langle \Phi \rangle$ を最大にする状態| $\chi \rangle$ を求め、レーザー照射後の目標状態とする。すなわち、最終時刻で| $\chi \rangle$ となる自由回転波束| $\chi(t)$)を用いて評価関数 $y(t) = |\langle \chi(t) | \psi(t) \rangle|^2$ を設定し、局所最適化理論を適用することによりy(t)を単調増加させるレーザー場 $u_F(t) = Im[\langle \psi(t) | \chi(t) \rangle \langle \chi(t) | V_F | \psi(t) \rangle]$ を得る。

本研究では原則として上記の理論を適用することで非対称コマ分子を空間固定座標軸に揃える。しかしながら、対称性の観点から4種類に分類できる極性非対称コマ分子の中には $\pm x$ 軸および $\pm y$ 軸が物理的に等価となり、 $\mu_x = \mu_y = 0$ となるような分子が存在する。このような分子は、双極子相互作用によるトルクがz軸射影成分を持たないため、z軸周りに運動する回転波束を形成できず、x,y軸を空間固定X,Y軸に揃えることができない。そこで、分極率 α を介したレーザー電場との相互作用 $V_2(t)$ を利用してz軸周りの回転波束を形成する手法をとる。このときの $V_2(t)$ は、

$$V_2(t) = -\boldsymbol{E}(t) \cdot \boldsymbol{\alpha} \cdot \boldsymbol{E}(t)/2$$

$$=-\frac{1}{2}(u_{\mathrm{X}}(t) \quad u_{\mathrm{Y}}(t) \quad u_{Z}(t)) \begin{pmatrix} \Phi_{\mathrm{Xx}} & \Phi_{\mathrm{Xy}} & \Phi_{\mathrm{Xz}} \\ \Phi_{\mathrm{Yx}} & \Phi_{\mathrm{Yy}} & \Phi_{\mathrm{Yz}} \\ \Phi_{\mathrm{Zx}} & \Phi_{\mathrm{Zy}} & \Phi_{\mathrm{Zz}} \end{pmatrix} \begin{pmatrix} \alpha_{\mathrm{xx}} & \alpha_{\mathrm{xy}} & \alpha_{\mathrm{xz}} \\ \alpha_{\mathrm{yx}} & \alpha_{\mathrm{yy}} & \alpha_{\mathrm{yz}} \\ \alpha_{\mathrm{zx}} & \alpha_{\mathrm{zy}} & \alpha_{\mathrm{zz}} \end{pmatrix} \begin{pmatrix} \Phi_{\mathrm{Xx}} & \Phi_{\mathrm{Yx}} & \Phi_{\mathrm{Zx}} \\ \Phi_{\mathrm{Xy}} & \Phi_{\mathrm{Yy}} & \Phi_{\mathrm{Zy}} \\ \Phi_{\mathrm{Xz}} & \Phi_{\mathrm{Yz}} & \Phi_{\mathrm{Zz}} \end{pmatrix} \begin{pmatrix} u_{\mathrm{X}}(t) \\ u_{\mathrm{Y}}(t) \\ u_{\mathrm{Z}}(t) \end{pmatrix}.$$
(3)

なお、±x軸と±y軸を区別できないこのような分子は、3軸配向演算子 Φ の代わりに1軸配向2 軸配列演算子 $\Xi \left(\equiv \left(\Phi_{Xx}^2 + \Phi_{Yy}^2 + \Phi_{Zz} \right) / 3 \right)$ を用いて空間に対する指向性を評価する。 [結果] 4 種の極性非対称コマ分子のう ち±x 軸および±y 軸が区別できる対称 性に属する FNO 分子について、基底状 態から純回転遷移を利用して目標状態 $|\chi\rangle$ を得ることを想定した。図1より、 FNO 分子では、慣性モーメントテンソ ルの対角化より定まる a,b,c 軸と分子の 対称性より 定まる x,y,z 軸が (a,b,c) =(x,y,z)で対応していることが確認で きるため、 x,y,z 軸周りの回転定数は A,B,Cとして対応させることができる (*cf*.H₂O 分子: (c,a,b)=(x,y,z))。そこ で、FNO 分子の各種パラメータをまとめ ると以下のようになる。

 $\begin{bmatrix} A = 92666 \text{ MHz} \\ B = 11254 \text{ MHz}, \\ C = 10012 \text{ MHz} \end{bmatrix} \begin{bmatrix} \mu_x = 1.690 \text{ D} \\ \mu_y = 0.1370 \text{ D}. (4) \\ \mu_z = 0 \end{bmatrix}$

上記パラメータを用いて、局所最適化 理論を適用したところ、図 2~3のよう な計算結果が得られた。図 2 は制御レー ザー照射下での 3 次元配向度 $\langle \Phi \rangle$ の時間 発展を表している。被制御状態の最終時 刻 t = 9.7 ns における配向度は 0.53790 であり、目標状態の最大配向度 0.53935 をほぼ実現している。図 3 は Z 軸正方向 へ進行する制御レーザー場として設計さ れた E(t)の時間変化を示している。レー ザー強度は終時刻で 0 となるように設 計しているため、外場の切れた環境で配 向済み極性非対称コマ分子を得る本研 究の目標が達成されている。さらに、振 動数を解析すると、E(t)は目標状態を得

るために必要な回転遷移に相当する角振動数成分を持つことが明らかとなり、共鳴的な機構 で配向制御がなされていることが確認できた。

また、FNO分子とは異なる対称性を持つ残り3種の極性非対称コマ分子についても、制御 レーザー場の設計によって、空間に対して最も高い指向性を示す状態へと導くことができた。

[参考文献] [1] Salomon, J., Dion, C.M., Turinici, G.: J. Chem. Phys., **123**, 144310 (2005) [2] Takemoto. N., Yamanouchi. K.: Chem. Phys. Lett., **451**, 1 (2008)