ペンタセン単結晶の偏光ラマンスペクトル

(早大先進理工) 〇橋本望,古川行夫

【序】有機薄膜トランジスタの移動度は,有機半導体薄膜の 結晶性や形態,結晶粒界,結晶軸の配向,分子配向に依存し ており,様々な薄膜の作成条件が研究されている.移動度向 上のためには,多結晶薄膜を何らかの方法で評価する必要が ある.有機トランジスタ材料として期待されるペンタセン

(C₂₂H₁₄,図 1)の多結晶薄膜を評価するための基礎として、ペンタセン単結晶(三斜晶系,a= 6.28, b=7.71, c=14.4 Å, $\alpha=76.75$, $\beta=88.01$, $\gamma=84.52$ °. 空間群 $P\overline{1}$, Z=2)の偏光ラマン スペクトルを測定し、分子の対称種 a_g に属するバンドのラマンテンソル成分を決定した.

【実験】ペンタセン単結晶を 気流法(Ar ガス 20 ml/min) で作製し,平板状の結晶を得 た.作製した結晶のX線構造 解析を行った.顕微ラマン分 光計を使用し,532 nm 光(直 線偏光)を励起光として,長 焦点50倍対物レンズ(NA= 0.50)を用いて,後方散乱配 置で偏光ラマンスペクトル を測定した.励起光の電場と

散乱光の電場は平行で,その強度を *I* "としている. NIST 準拠タングステン・ハロゲン標準光源 を用いて,分光計の感度較正を行った.

【結果・考察】X 線構造解析から、平板の面は単結晶の(001)面すなわち ab 面であるという結果 を得た. ab 面に垂直な方向から波長 532 nm の励起光を入射して測定した偏光ラマンスペクトル を図 2 に示した.分子の点群は D_{2h} で,分子振動の既約表現は $18a_g + 9b_{1g} + 7b_{2g} + 17b_{3g} + 8a_u + 17b_{1u}$ + $17b_{2u} + 9b_{3u}$ である.空間群の因子群は C_i 点群と同型であり、単位胞に非等価な 2 個の分子が存 在し、2 つの分子のサイト群は両方とも C_i である.因子群解析の結果、分子内振動の既約表現は $102A_g + 102A_u$ であった.結晶の A_g 振動は、分子の振動 a_g 、 b_{1g} 、 b_{2g} 、 b_{3g} と関係している.測定し たスペクトルでは、結晶場の分裂は観測されなかった.孤立分子について基準振動計算 (B3LYP/6-311G**) を行いバンドの帰属を行ったところ、ほとんどのバンドは a_g と b_{3g} に帰属 された.

次に,結晶の a 軸の方向を決めるために, ab 面に垂直な方向から励起光を入射して,結晶を 15°ずつ回転させるごとにスペクトルを測定した.532 nm 光励起における 1598 cm⁻¹ (b_{3g}) バン ドについて,回転角と観測強度の関係を図 3a に示した.以下,得られた結果をラマンテンソルに 基づいて解析する.分子座標系として,図1に示したように,面外方向を u 軸,短軸方向を v 軸, 長軸方向を w軸とする.分子座標系におけるラマンテン ソル α_m は、 D_{2h} 対称性から次式のように表される.

$$\boldsymbol{\alpha}_{m}\left(a_{g}\right) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \boldsymbol{\alpha}_{m}\left(b_{3g}\right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & f \\ 0 & f & 0 \end{pmatrix}$$
(1)

実験室座標系として,結晶のa軸,結晶のab面内でa軸に垂直な軸,右手系でこれらに垂直な軸を,それぞれ X軸, Y軸, Z軸とおく.非等価な分子 I と II に対して, uvw分子座標系と XYZ 実験室座標系との座標変換行列 ($T_1 \ge T_2$)を,X線回折で求められた原子座標[1]から 計算した.実験室座標系における分子 I と II のラマンテ ンソル α_i^k は次式のようになる.

$$\boldsymbol{\alpha}_{l}^{k} = \boldsymbol{T}_{k}\boldsymbol{\alpha}_{m}\tilde{\boldsymbol{T}}_{k} = \begin{pmatrix} \boldsymbol{\alpha}_{XX}^{k} & \boldsymbol{\alpha}_{XY}^{k} & \boldsymbol{\alpha}_{XZ}^{k} \\ \boldsymbol{\alpha}_{XY}^{k} & \boldsymbol{\alpha}_{YY}^{k} & \boldsymbol{\alpha}_{YZ}^{k} \\ \boldsymbol{\alpha}_{XZ}^{k} & \boldsymbol{\alpha}_{YZ}^{k} & \boldsymbol{\alpha}_{ZZ}^{k} \end{pmatrix}$$
(2)

実験室座標系と分子座標系のラマ ンテンソル成分の関係を表 1 に示 した.ただし,面外成分である aは面内成分 $b \ge c$ に比べて小さいた め, $a = 0 \ge$ 近似した.

結晶のバンドは分子 I と II のバ ンドの重ね合わせと考えられる. *ab* 面に垂直な方向から,すなわち Z軸に沿って励起光を入射して,励 起光の電場と *a* 軸との成す角度を ⁻

表1 実験室座標系ラマンテンソル成分

	b_{2}	Bg	a_g		
k	1	2	1	2	
$\alpha_{_{XX}}$	0.562 <i>f</i>	0.551 <i>f</i>	0.717 <i>b</i> +0.173 <i>c</i>	0.723 <i>b</i> +0.172 <i>c</i>	
$\alpha_{_{YY}}$	0.186 <i>f</i>	-0.265 f	0.112 <i>b</i> +0.811 <i>c</i>	0.253b+0.678c	
α_{zz}	-0.747 f	-0.286 f	0.172 <i>b</i> +0.0154 <i>c</i>	0.0248 <i>b</i> +0.149 <i>c</i>	
$\alpha_{_{XZ}}$	-0.626 <i>f</i>	-0.722 f	0.351 <i>b</i> -0.0517 <i>c</i>	0.134 <i>b</i> +0.160 <i>c</i>	
$\alpha_{_{XY}}$	0.346 <i>f</i>	0.0610 f	0.283 <i>b</i> –0.375 <i>c</i>	-0.427b+0.342c	
$\alpha_{_{YZ}}$	-0.186 <i>f</i>	0.498 <i>f</i>	0.139 <i>b</i> +0.112 <i>c</i>	-0.0791 <i>b</i> +0.318 <i>c</i>	

θとすると、気体分子配向モデルの下で、ラマン散乱強度 I^{II}は次式のように表される.

$$I^{\parallel} = \sum_{k=1}^{2} \left| \tilde{\boldsymbol{e}}_{i} \boldsymbol{\alpha}_{l}^{k} \boldsymbol{e}_{s} \right|^{2} = \sum_{k=1}^{2} \left(\alpha_{XX}^{k} \cos^{2} \theta + 2\alpha_{XY}^{k} \cos \theta \sin \theta + \alpha_{YY}^{k} \sin^{2} \theta \right)^{2}$$
(3)

ここで、 \tilde{e}_i は入射光、 e_s は散乱光電場方向の単位ベクトルである.この式に表1の値を代入して、 図 3b に b_{3g} 対称種のバンド強度を θ に対してプロットした. $\theta = 0^\circ$ が a 軸の方向であり、実測値 と計算値はよい一致を示した.実測値との最小2乗法を用いたフィッティングによりラマンテン ソル成分を決定し、表2に示した.ただし、1598 cm⁻¹ (b_{3g}) バンドのf値を基準の100とした. 表2 求めたテンソル成分の相対値

b_{3g}			a_g		
波数 / cm ⁻¹	1598	1535	1458	1373	1179
テンソル値	f=100	b = 84.9, c = -100	<i>b</i> = 41.5, <i>c</i> = -53.7	<i>b</i> = 179, <i>c</i> = -210	<i>b</i> = 75.9, <i>c</i> = -99.4

1. The Cambridge Crystallographic Data Centre http://www.ccdc.cam.ac.uk/