3P041

ハロゲン-硫黄相互作用により構造制御された

金属錯体系分子性導体の構造と物性

(理研) 〇草本哲郎、山本浩史、加藤礼三

【序】

我々は近年の研究において、メチル-3,5-ジョードピリジニウム(Me-35DIP)と [Ni(dmit)₂]アニオンからなる分子性導体 (Me-35DIP)[Ni(dmit)₂]₂が、結晶中において二 種類の[Ni(dmit)2]アニオン層、すなわち二次元遍歴電子系を形成する層と、モット絶 縁化による局在スピン系を形成する層を有することを明らかにした。この化合物は、 伝導性と磁性という二種類の異なった物性が同一のπ共役分子に由来するという興味 深い系、すなわち「デュアル機能π電子系」である。このような系は今まで報告例が なく、新しいタイプの遍歴/局在電子間相互作用に基づく新奇な物性の発現が期待でき る。本研究ではこの系をさらに拡張すべく、新たな金属錯体系分子性導体の開発を目 的とした。このような系を実現するには、(1) 二種類の結晶学的に独立なアニオンが 存在すること (2) 各アニオンがそれぞれ独立した層(ネットワーク構造)を形成す ること、が必要となるが、これらを実現するものとして、我々は図1に示す非対称力 チオンであるアルキル-2.5-ジハロピリジニウムに注目した。ピリジニウムに導入され たハロゲン原子 X は、ハロゲン結合により[Ni(dmit)2]アニオンと相互作用できる。こ の時2位のXと5位のXでは空間的に異なった環境にあることから、図1に示すよ うな状況では、上記の条件(1), (2)が満たされ、デュアル機能π電子系の実現が期待で きる。今回、エチル-2,5-ジブロモピリジニウム(Et-25DBP: X = Br, R = Et)を用いて デュアル機能π電子系を構築しうる新規な分子性導体が得られたので報告する。

【実験】

Et-25DBP は、2,5-ジブロモピリジンと Et₃O·BF₄ をアセトニトリル中一晩撹拌する ことで BF₄ 塩として得られた(収率 32%)。アセトン中 Et-25DBP·BF₄ を支持電解質 として(TBA)[Ni(dmit)₂](TBA=Tetrabutylammonium)を電解酸化することで、新規分 子性導体(Et-25DBP)[Ni(dmit)₂]₂ を黒色板状結晶として得た。

【結果および考察】

単結晶 X線構造解析により明らかになった(Et-25DBP)[Ni(dmit)₂]₂の室温における分 子構造を図 2 に示す。[Crystal data for (Et-25DBP)[Ni(dmit)₂]₂: Triclinic, P-1, a = 6.516(2), b = 7.560(2), c = 38.912(15) Å, $\alpha = 85.678(10), \beta = 85.473(9), \gamma = 67.670(8)^\circ, V = 1765(1)$ Å³, $Z = 2, R = 0.0713, R_W = 0.182, GOF = 1.036$] 単位格子中には結晶学的に独立な二つの[Ni(dmit)₂]アニ

オン(A および B) と一つの Et-25DBP カチオンが存在してい た。アニオンAの硫黄原子とカチ オンの臭素原子間の距離は、硫黄 原子と臭素原子の van der Waals 半径の和(3.65 Å)よりも短く、 有効なハロゲン結合の存在が示 唆される。一方、アニオンBとカ チオン間にはハロゲン結合は見 られなかった。

図 2. (Et-25DBP)[Ni(dmit)₂]₂の分子構造。図中の数字は 原子間距離(Å)を示している。

図3に示すように、アニオンAおよびBは結晶中においてそれぞれ独立した層(A およびB層とする)を形成していた。このことは、 (Et-25DBP)[Ni(dmit)₂]₂が新たな デュアル機能 π 電子系を構築し得ることを示している。

拡張ヒュッケル法による分子軌道計算により各アニオン間の重なり積分を求め、強 束縛近似バンド計算により各層のバンド構造を計算した(アニオンA、Bの価数は等 しいとした)。その結果、A, B層ともに実効的に half-filled バンドを形成しており、 特にA層は Mott 絶縁化状態であることが予想される(図4)。

(Et-25DBP)[Ni(dmit)₂]₂の電気伝導度を4端子法により測定した。室温の伝導度は約 1 S·cm⁻¹であり、室温から100Kにかけて半導体的な伝導挙動を示した。当日はこの 塩の磁気的性質を含め、物性と構造、電子状態の相関について議論する。さらに Et-25DBP を化学修飾したカチオンからなる分子性導体についても触れる予定である。

図 3. (Et-25DBP)[Ni(dmit)₂]₂の結晶構造。青:アニオンA、 赤:アニオンB、緑:カチオン。

図 4. (Et-25DBP)[Ni(dmit)₂]₂の A 層のバンド構造。