3P021

(*o*)H₂-HCN 分子錯体の内部回転遷移のミリ波二重共鳴分光 (九州大院・理) o山中 里沙・萩 健介・原田 賢介・田中 桂一

[序]

H₂-HCN は H₂と HCN が弱く結合した分子錯体で、 H₂とHCN がそれぞれ内部回転をしている(図 1)。H₂ は水素原子の核スピンの配向によって ortho 及び para 水素が存在する。ミリ波分光^[1]により H₂-HCN の基底 状態では(*o*)H₂では HCN の N 側に結合し、(*p*)H₂は HCN のH側に結合すると報告した。また、(o)H2-HCN につ いては v₁(CH 伸縮)バンドの高分解能赤外スペクトル^[2] が報告されている。(o)H₂では内部回転角運動量が $j_{H_2} = 1$ であるので、 j_{H_2} の分子軸成分 $k_{H_2} = 0,1$ により、HCN の内部回転の基底状態($j_{HCN}=0$)では Σ_0 と Π_0 の二つの準 位が生じる(図 2)。 Σ_0 (k_{H₂} = 0)状態の方がエネルギー が低く、 $\Pi_0 (k_{\rm H_2} = 1)$ 状態は 40cm⁻¹程上にあると理論 計算より推定されている。k_{H2} = 0状態で HCN の内部 回転の第一励起状態($j_{HCN}=1$)では Σ_1 、 Π_1 の二つの準位 が生じる。(*o*)H₂-HCNの Σ_1 - Σ_0 及び Π_1 - Σ_0 内部回転遷 移については当研究室で予備的な実験を行った^[3]。本 研究では強い未帰属線についてミリ波2重共鳴分光法 により帰属を確定した。

[実験]

HCN 0.5%、H₂25%およびバッファーガスとして Ne 75%を含む混合ガスをパルスノズルより真空槽 内に噴射し H₂-HCN 分子錯体を生成した。プロー ブ光のミリ波を入射し、多重反射光学系により超音 速ジェット中を 10 往復し H₂-HCN 分子錯体の Q(2)内部回転遷移による吸収を観測した。さらにポンプ 光のミリ波をプローブ光に重ねて多重反射セルに 入射し、分子間振動遷移と下の準位を共有する基底 状態 Σ_0 の $J=2 \leftarrow 1$ の純回転遷移をポンプし Q(2)遷 移の強度がどの様に変化するかを観測した。ポンプ 光の偏光面はプローブ光の偏光面から 90°回転し て入射し、検出器の直前でグリット偏光子によりポ ンプ光をカットし、プローブ光のみを検出した。

図3二重共鳴の模式図

[結果と考察]

Q(2)は基底状態の $J=2 \leftarrow 1$ 回転遷移をポンプしたと きに強度が 2 倍に増加した(図 4)。これは基底状態の J=2 状態の分布が $J=2 \leftarrow 1$ 遷移の励起により増加する 為であり、これよりプローブ光で観測している分子 間振動遷移は基底状態の J=2 からの遷移であること がわかる。二重共鳴による強度変化とスペクトルの パターンより、 $\Sigma_1 - \Sigma_0$ 及び $\Pi_1 - \Sigma_0$ バンドのスペクトル を帰属した。 $\Pi_1 - \Sigma_0$ については P(2)、Q(1)、Q(2)、R(0)、 $R(2)、\Sigma_1 - \Sigma_0$ バンドについては P(2)、R(0)を帰属した (図 5)。 $\Pi_1 - \Sigma_0$ バンドの帰属したスペクトルを

赤、 $\Sigma_1 - \Sigma_0$ バンドの帰属したスペクトルは緑、未帰属 のスペクトルを黒で表した。未帰属のスペクトルは (p)H₂-HCN のスペクトルである可能性があるため、現 在パラ水素を用いた実験を計画中である。これらのス ペクトルを解析し、 $\Sigma_1 - \Sigma_0$ 及び $\Pi_1 - \Sigma_0$ バンドのバンドオ リジン、回転定数及び核四極子相互作用定数を決定し た(表1)。核四極子相互作用定数と回転定数より Σ_1 、 Π_1 それぞれの準位の平均分子間距離 < $R^{-2} >^{-\frac{1}{2}}$ と内部 回転の平均二乗振幅 < $\theta^2 >^{\frac{1}{2}}$ を求めた。HCN の内部回転 が励起されると平均二乗振幅が非常に大きくなる事が わかる(表2)。

		(MHz)
Σ_0	В	12911.055(13)
	eQq	-2.640(35)
Σ_1	v	185890.16(26)
	В	12817.53(13)
	eQq	0.211(48)
Π_1	v	164595.307(34)
	В	13068.164(10)
	eQq	-0.414(95)

表1 決定した分子定数

M. Ishiguro, et al., J. Chem. Phys. 115, 5155 (2001).
D.T.Moore, et al., J. Chem. Phys. 115, 5137(2001).
該律介 修士論文(2007).

図 4 $\Pi_1 - \Sigma_0 Q(2)$ の観測スペクトル

Σ_0	$< R^{-2} > \frac{1}{2}$	3.961 Å
	$<\theta^2>^{\frac{1}{2}}$	33.02°
Σ_1	$< R^{-2} > \frac{1}{2}$ $< \theta^2 > \frac{1}{2}$	4.13 Å 56.57 °
Π_1	$< R^{-2} > \frac{1}{2}$ $< \theta^2 > \frac{1}{2}$	4.05Å 51.24°

表2 分子間距離と平均振幅