チオラート保護11 kDa 金クラスターの組成決定と構造に関する考察

(北大・触セ¹⁾, Kasetsart Univ.²⁾)

○角山理沙子¹⁾,角山寬規¹⁾, Panvika Pannopard²⁾, Jumras Limtrakul²⁾, 佃達哉¹⁾

【緒言】Au(I)-SR オリゴマーを還元すると、Au₂₅(SR)₁₈, Au₃₈(SR)₂₄, Au₁₄₄(SR)₆₀などの特異的に安定 なチオラート保護金クラスター(Au:SR)の系列が得られる。最近の単結晶 X 線構造解析や理論 計算によって、高い対称性をもつ金クラスターの表面を金チオラートオリゴマー -SR-[Au(I)-SR-]_n (n=1,2)が被覆した構造をもつことがわかりつつある(図 1(A)). 一方、我々はポ リマー保護金クラスターをチオール(RSH)と反応させると(図 1(B))、上記の方法では得られな い 11 kDa, 26 kDa 程度の金コアをもつ安定な Au:SR が得られることを見いだした[1][2]. 11-kDa Au:SR については、レーザー脱離イオン化(LDI)質量分析法で観測された解離物の組成と熱重

量分析の結果に基づいて化学組 成を Au₅₅(SR)₃₂ と推定し,立方 八面体構造の金 55 量体の表面 上に 32 個のチオラートが配位 した構造を提案した[1].本研究 では,11-kDa Au:SR の化学組成 をマトリックス支援レーザー脱 離イオン化(MALDI)質量分析法 を用いて再評価するとともに、 構造についても金チオラートオ リゴマー界面構造モデルに基づ いて再検討を行った.

【実験】11-kDa Au:SC₁₈H₃₇は以下の2段階で調 製した.まず,HAuCl₄/PVP水溶液とNaBH₄/PVP 水溶液を40[°]Cのマイクロミキサー中で混合し, 平均粒径1.0 nm程度の単分散Au:PVPを調製した. 次に,Au:PVPが分散した水相とC₁₈H₃₇SHを含 むトルエン相を激しく攪拌してAu:SC₁₈H₃₇を調 製し,これをさらに80[°]CのC₁₈H₃₇SH中で20時 間加熱した.得られた混合物からリサイクルサイ

図 1. チオラート保護金クラスターの調製法 (A) Au(I)-SR オリ ゴマーの還元による方法.(B) ポリマー保護金クラスターのチオ ール化による方法.

図 2. (A) Au:SC₁₈H₃₇のサイズ排除クロマトグラム,(B) 溶出時間 225 分の成分の紫外可視吸収 スペクトル

ズ排除クロマトグラフィーを用いて 11-kDa Au:SC₁₈H₃₇を分取した.図 2(A) にリサイクル 6 周目のクロマトグラムを示す.溶出成分の紫外可視吸収スペクトル形状から,溶出時間の短い 成分が 11-kDa Au:SC₁₈H₃₇に,長い成分が既知の Au₃₈(SC₁₈H₃₇)₂₄に対応することがわかった. 特に純度が高い溶出時間 225 分の成分(図 2(B))について MALDI 質量スペクトルを測定した. 【結果と考察】11-kDa Au:SC₁₈H₃₇の典型的な MALDI 質量スペクトルを図 3 に示す.脱離イオ

ン化レーザーの強度が比較的強い時に観測 された Au_nS_m⁺の分布(図 3 (a))から, Au₅₅と Au₅₄をコアとするクラスターが含まれてい ることを見いだした.レーザー強度をイオン の検出限界近くまで抑えると、質量数 16000-20000の領域に複数のピークが観測さ れた(図 3 (b)). 赤い矢印で示すピークを Au₅₅(SC₁₈H₃₇)₃₁,青い矢印を Au₅₄(SC₁₈H₃₇)₃₀ と帰属すると、一連のピークはこれらの解離 イオン種として説明できた.ここで観測され た解離パターンが Au₃₈(SC₁₈H₃₇)₂₄のものと酷 似していることは、この帰属の妥当性を示し ている. Au₅₅(SR)31 および Au₅₄(SR)30 という化 学組成は以前に提案した Au₅₅(SC₁₈H₃₇)₃₂ と は異なっており,その特異的な安定性を従来 の構造モデルでは説明することはできない. むしろ他の安定クラスターと同様に,金コア が-SR-[Au(I)-SR-],オリゴマーで保護された構 造をもつと考えるのが妥当である. 解離パタ ーンが Au₃₈(SC₁₈H₃₇)₂₄と類似していることも 共通した界面構造をもつことを支持してい る. そこで, $Au_{55}(SC_{18}H_{37})_{31}$ と $Au_{54}(SC_{18}H_{37})_{30}$ が, 金コア, -SR-[Au(I)-SR-]₁, -SR-[Au(I)-SR-]₂ の3種類の部分構造からなると仮定すると、

図 3. 11-kDa Au:SC₁₈H₃₇の MALDI 質量スペクトル. レーザー強度が(a)強い場合と(b)弱い場合.

複数の組み合わせが可能である(表 1). 一方図 4 に示すように, 既知の Au:SR クラスターに ついては,各部分構造に属する金原子の割合がクラスターサイズに対して連続的に変化する様 子が読み取れる. Au₅₅(SC₁₈H₃₇)₃₁もこの傾向に従うと仮定する(図 4 白丸)と, Au₃₇コアを 8 個 の-SR-[Au(I)-SR-]₁と 5 個の-SR-[Au(I)-SR-]₂が保護した構造が最も妥当である. いずれの組み合 わせをとるにしても,チオールの配位プロセスにおいて金クラスターの表面構造が劇的に変化 する事が明らかになった.

[1] H. Tsunoyama, et al., J. Phys. Chem. C, 111, 4153 (2007).
[2] H. Tsunoyama, et al., J. Am. Chem. Soc., 128, 6036 (2006).
[3] R. Tsunoyama, et al., J. Phys. Chem. C, in press.

コア中 金原子数	-SR-[Au-SR-]n オリゴマー数					コアの
	Au ₅₄ (SR) ₃₀		$Au_{55}(SR)_{31}$		S配位総数	外殻/内殻
	n=1	<i>n</i> =2	<i>n</i> =1	n=2		金原子数
39	15	0	14	1	30	30/9
38	12	2	11	3	28	28/10
37	9	4	8	5	26	26/11
36	6	6	5	7	24	24/12
35	3	8	2	9	22	22/13
34	0	10	-	-	20	20/14

表 1. Au₅₄(SC₁₈H₃₇)₃₀および Au₅₅(SC₁₈H₃₇)₃₁の構造モデル