3A10 Studying Infrared Absorption of Reaction Intermediates Using Step-scan FTIR and *p*-H₂ Matrix Isolation Techniques

(Department of Applied Chemistry, National Chiao Tung University) Yuan-Pern Lee

Among several techniques employed in our laboratory for studying transient species in chemical reactions two will be discussed. We developed the time-resolved Fourier-transform infrared (TR-FTIR) absorption spectroscopy to investigate IR absorption of gaseous transient species. A flow reactor with a multipassing UV photolysis beam and a multipassing IR probe beam is coupled to a step-scan FTIR spectrometer with both dc- and ac-detection to record temporal profiles of the infrared absorption of reaction intermediates. IR absorption spectra of several reactive species such as CH₃OO [1], CH₃SO₂ [2], ClCOOH [3], and CH₃C(O)OO [4] were recorded. Spectral assignments were made based on reaction mechanisms and comparison of observed vibrational wavenumbers and rotational contours with those predicted quantum-chemically. The identifications of two conformers of CH₃C(O)OO and the determination of the relative energy of these conformers will be discussed. In the reaction of CH₃CO + O₂, absorption bands with origins at 1851 \pm 1, 1372 \pm 2, 1169 \pm 6 and 1102 \pm 3 cm⁻¹ are attributed to t-CH₃C(O)OO, and those at 1862 \pm 3, 1142 \pm 4 and 1078 \pm 6 cm⁻¹ are assigned to c-CH₃C(O)OO. A weak band near 1960 cm⁻¹ is assigned to α -lactone, cyc-CH₂C(=O)O, a coproduct of OH. The observed relative intensities indicate that t-CH₃C(O)OO is more stable than c-CH₃C(O)OO by 3.0 \pm 0.6 kJ mol⁻¹. Based on these observations, the branching ratio for the OH + α -lactone channel of the CH₃CO + O₂ reaction is estimated to be 0.04 ± 0.01 . A simple kinetic model is employed to account for the decay of CH₃C(O)OO. Preliminary results on CH₃OSO and CH₃SO will also be presented.

Para-hydrogen (*p*-H₂) has recently emerged as a new matrix host. Because of the 'softness' associated with the extensive delocalization of the H₂ moieties, new characteristics of molecules isolated in this quantum solid are explored. We demonstrated that the internal rotation of methanol persists in solid *p*-H₂ by observation of splittings of the *E/A* torsional doublets in internal-rotation-coupled vibrational modes [5]. We also provided direct spectral evidence that CH₃F isolated in *p*-H₂ rotates about only its symmetry axis, and not about the other two axes by observation of two weak absorption lines from the *E* (*K* = 1) level and one intense feature from the *A* (*K* = 0) level for degenerate modes v₄–v₆ of CH₃F [6]. We demonstrated another feature of solid *p*-H₂, the absence of cage effect, by reaction of Cl, produced from *in situ* photodissociation of Cl₂, with CS₂. Absorption lines of ClSCS, not ClCS₂ or Cl₂CS₂, were observed at 1479.5 and 1480.8 cm⁻¹ [7]. This feature opens up a new method to prepare free radicals by barrierless reactions of atom and molecules. In the reaction of Cl with propene, lines at 1382.2, 1214.7, 1149.6, 1132.7, 1007.6, and 649.9 cm⁻¹ are assigned to 2-chloropropyl radicals (Fig. 1). Only 2-chloropropyl radicals, not 1-chloropropyl radicals, were observed in this reaction, in sharp contrast to what is generally accepted in the gas-phase and solution chemistry. This demonstrates a preferential attack in the addition reaction of Cl with propene in solid p-_{H2} (Fig. 2). Possible reason for this selectivity will be discussed. We can also produce free radicals via in situ photolysis which is difficult in noble-gas matrices. Production of CH₃S from photolysis of CH₃SSCH₃, CH₃SCH₃, and CH₃SH and the first identification of the IR spectrum of CH₃S will also be discussed.

Fig.1. Experimental difference spectra (a-c) and simulated harmonic IR spectra for the 2-chloropropyl (d) and 1-chloropropyl (e) radicals in the regions 550-770 and 1000–1220 cm^{-1} . (a) Recorded at 3.2 K upon annealing of a C₃H₆/Cl₂/pH₂ (1:1.3:2000) matrix to 4.3 K for 1 hour after deposition for 5 hours. (b) Recorded at 3.2 K upon irradiation of a C₃H₆/Cl₂/p-H₂ (1:1:2000) matrix at 365 nm for 5 hours after deposition for 10 hours. Annealing was not done prior to 365 nm photolysis. (c) Recorded at 3.2 K upon irradiation of the matrix described in (b) at 254 nm for 4 h. Annealing to 4.5 K for 50 minutes was done prior to 254 nm photolysis. (d) and (e) Simulated spectra based on the unscaled harmonic frequencies of 2-chloropropyl and 1-chloropropyl radicals, respectively, computed at the B3LYP/aug-cc-pVDZ level of theory, with a simulated half-width of 0.5 cm⁻¹ and a resolution of 0.25 cm^{-1} .

Fig. 2. Minimum energy structures of the Cl₂-C₃H₆ complex in the gas phase (left panels) and within a model hexagonal close-packed lattice of p-H₂ (right panels) calculated witht B3LYP/aug-cc-pVDZ. Panel (a) is a view looking down the Cl--Cl bond axis and panel (b) is a side view $\sim 90^{\circ}$ from that displayed in (a). In the p-H₂ model structure, the p-H₂ molecules are being represented by single pink spheres and some para-hydrogen molecules have been removed to reveal the structure of $Cl_2-C_3H_6$.

References

- [1]. D.-R. Huang, L.-K. Chu, and Y.-P. Lee, J. Chem. Phys., 2007, 127, 234318.
- [2]. L.-K. Chu and Y.-P. Lee, J. Chem. Phys., **2006**, 124, 244301.
- [3]. L.-K. Chu and Y.-P. Lee, J. Chem. Phys., 2009, 130, 174304.
- [4]. S.-Y. Chen and Y.-P. Lee, J. Chem. Phys., 2010, 132, 114303.
- [5]. Y.-P. Lee, Y.-J. Wu, R. M. Lees, L.-H. Xu, J. T. Hougen, Science, 2006, 311, 365.
- [6]. Y.-P. Lee, Y.-J. Wu, and J. T. Hougen, J. Chem. Phys., 2008, 129, 104502.
- [7]. C.-W. Huang, Y.-C. Lee, and Y.-P. Lee, J. Chem. Phys., 2010, 132, 164303.