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An exactly solvable model of laser-molecule interaction
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[Introduction] Analytical solutions to the time-dependent Schrödinger equation are
in general rare. Therefore, to study time-dependent problems such as the interaction of a
molecule with a laser pulse, numerical techniques are indispensable. In particular in the
case when the strength of the laser field becomes comparable to the binding forces within
a molecule, so that perturbation theory cannot be used, direct numerical integration of
the Schrödinger equation is often the only way of obtaining information about the wave
function. However, for systems with several electrons and nuclei, grid methods become
impractical, and approximate schemes [1] must be employed instead. One difficulty with
such methods is that it may be difficult to estimate the numerical error made compared
to the exact solution. Solutions to model problems may here provide a way to test
approximate numerical schemes.

In the present contribution, we derive an exact solution to a model problem with
two electrons and two protons, coupled to an external driving field. The solution is
found for arbitrary strength, pulse shape and frequency of the applied light field. For
certain parameters, observables such as the electron density may be written down in
closed, analytic form. In the general case, finding the complete, 12-dimensional, time-
dependent wave function is reduced to the solution of a combination of one-dimensional,
static problems. Similar model problems have been considered before [2,3], although not
for laser-induced coupled electron and proton motion.

[Theoretical model] The model system consists of two pairs of particles: two elec-
trons, interacting via the Coulomb potential, and two protons, also with Coulombic in-
teraction. The electron-proton potential is modeled as a harmonic potential, and both
electrons and protons are externally confined by an additional harmonic potential. The
light-matter coupling with the laser field E(t) is included in the standard dipole form.
The Hamiltonian, with electron coordinates r1, r2 and proton coordinates R1, R2, reads
(in atomic units)
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By going to the new coordinates r+ = (r1 + r2)/2, r− = r1 − r2, R+ = (R1 + R2)/2,
R− =R1 −R2, r = (MR+ + r+)/(1 +M), and q =R+ − r+, the Hamiltonian (1) separates.
The complete, time-dependent wave function may thus be written in product form,

Ψ(R1,R2,r1,r2, t) = ζ(r)e−iErtχ(R−)e−iER− tψ(r−)e−iEr− tφ(q, t). (2)

[Discussion] The solutions ζ(r), χ(R−), ψ(r−), and φ(q, t) have all been discussed
in the literature [2,3]. In particular, the time-dependent function φ(q, t) is the solution to



−2 0 2
−1

0

1

r1z

R
1
z

 

 (a)

0.1
0.2
0.3

−2 0 2
−1

0

1

r1z

R
1
z

 

 (b)

0.05
0.1
0.15
0.2

−2 0 2
−1

0

1

r1z

R
1
z

 

 (c)

0

0.2

0.4

−2 0 2
−1

0

1

r1z

R
1
z

 

 (d)

0

0.2
0.1

0.3

Figure 1: The electron-proton density ρep(R1z, r1z, t) at t = 0, for different angular mo-
mentum quantum numbers le, lp of the electrons and protons. In (a), (le, lp) = (0,0), in
(b), (le, lp) = (1,0), in (c), (le, lp) = (0,1), and in (d), (le, lp) = (1,1).

the quantum harmonic oscillator driven by an external field, and may be written in closed
form for reasonable choices of the laser field E(t). Finding the functions χ(R−) and
ψ(r−) may be reduced to finding the eigenfunctions of a static, one-dimensional problem
with potential V (x) = ω2x2 + 1/x.

From the wave function Ψ, we calculate a few observables of interest. For a particular
choice of parameters ω2+Ω2/2 = 1/8, the electron density ρ2e in the direction of the applied
field (z-direction) may be written in closed, analytic form. Another interesting observable
that is easily computed is the time-dependent electron-proton density,

ρep(R1z, r1z, t) = ∫ dR1xdR1ydr1xdr1yd
3R2d

3r2∣Ψ(R1,R2,r1,r2, t)∣2, (3)

an example of which is shown in Fig. 1.
We have also used the exact wave function Ψ to study the accuracy of the Born-

Oppenheimer approximation (BOA) applied to this model. We find that the BOA is in
most cases very good, except if the system is driven resonantly, that is, if the carrier
laser frequency equals the eigenfrequency of the system. In this case, the system absorbs
energy, which results in that the expectation value of the dipole moment continues to
oscillate after the laser pulse has passed. Use of the BOA to calculate the dipole moment
predicts a too low frequency for this oscillation.
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