2P079

イリジウム錯体のりん光を用いたin vivo酸素濃度計測

(群馬大 ATEC*, 群馬大院・工**, 群馬大・生調研***) ○小林 敦*, 吉原利忠**, 穂坂正博***, 竹内利行***, 飛田成史**

【序】イリジウム錯体は、室温において強いりん光を与えるため、有機 EL 用発光材料として 注目されている。しかし、りん光は酸素によって顕著な消光を受けるため、イリジウム錯体 を有機 EL 用発光材料として応用するには酸素から遮断する必要がある。一方、我々は、この

酸素消光現象を逆に利用して,イリジウム錯体の りん光を用いて生体中の癌などの低酸素組織を可 視化する方法を開発した[1]。イリジウム錯体とし ては,組織への透過性に優れた赤から近赤外の発 光を与える BTP および BTPHSA(Fig. 1)を用いた。 本研究では,癌組織が正常組織に比べて低酸素状 態にあることをより定量的に明らかにするため, 担癌マウスに BTP または BTPHSA を投与し,癌 組織および正常組織の発光寿命測定を行った。

【実験】*in vivo* 発光寿命測定には Fig. 2 に示す装置を用いた。二分岐ファイバを用いること により,マウスの体の任意の点について発光寿命を測定することができる。励起光には Nd³⁺:YAG laser の第2高調波(532 nm, 15kHz)を用いて,時間相関単一光子計数法に基づいて 発光減衰を測定した。担癌マウスの尾静脈からイリジウム錯体 250 nmol (Dimethylsulfoxde: 生理食塩水 = 1:9) 溶液 100 μ l を投与し,2時間後に癌組織と正常組織の発光寿命測定を行 った。

Fig. 2 in vivo 発光寿命測定装置

【結果と考察】Fig. 3にBTP, BTPHSAを投与した担癌マウスの癌組織,正常組織の発光減衰 曲線を示す。寿命が数10 ns以下の成分は、マウスの自家蛍光による。イリジウム錯体による 長寿命発光減衰を解析した結果、どちらも2成分の寿命が得られた(Table 1)。2成分の寿命か ら平均寿命<☆を求めたところ、どちらのプローブを用いた場合も癌組織の方が正常組織に

Fig. 3 マウスの癌組織および正常組織における発光減衰曲線。(a)BTP を投与したマウス, (b)BTPHSA を投与したマウス。

比べて長寿命となった。次に以下に示すStern-Volmerの式より酸素濃度を求めた。

$$\frac{\tau_{\rm p}^0}{\tau_{\rm p}} = 1 + k_{\rm q} \tau_{\rm p}^0 p O_2 \qquad (1) \qquad p O_2 = \frac{1}{k_{\rm q}} \left(\frac{1}{\tau_{\rm p}} - \frac{1}{\tau_{\rm p}^0} \right) \qquad (2)$$

ここで pO_2 は酸素分圧, τ_p^0 は脱気下におけるりん光寿命, τ_p は酸素分圧 pO_2 でのりん光寿命, k_q は消光速度定数である。これまでの研究で,BTP は細胞内の主に小胞体膜に局在すること が分かっている。BTP, BTPHSA の τ_p^0 , k_q をマウス生体内で求めることは困難であるため, オルガネラ膜のモデルとして DMPC 膜に取り込まれた BTP, BTPHSA の τ_p^0 , k_q を用いた。 DMPC 膜中(35°C)の BTP, BTPHSA の τ_p^0 は, それぞれ, 6.0 µs, 2.1 µs, k_q は 1.2×10⁴ mmHg⁻¹ s⁻¹, 7.6×10³ mmHg⁻¹ s⁻¹であった。これらのデータと<かを BTP, BTPHSA を投与したマウス のどちらも癌組織では正常組織と比較し,酸素濃度が低くなった。しかし,得られた酸素分 圧の値は一般に知られている癌組織,正常組織の値に比べ,やや低い値となった。この違い は生体中の k_q 値の見積に起因すると考えられる。

Probe	Tissue	$ au_1$ (µs)	%	$ au_2$ (µs)	%	$\langle \tau \rangle$ (µs)	χ^2	$ ho O_2 (mmHg)$	
BTP	tumor	1.03	4	4.77	96	4.65	1.304	5	
	normal	1.27	38	3.18	62	2.47	1.454	25	
BTPHSA	tumor	0.62	25	1.93	75	1.61	1.372	19	
	normal	0.46	14	1.68	86	1.52	1.301	24	
$\langle \tau \rangle = a_1 \tau_1^2 + a_1 \tau_1^2 + a_1 \tau_1 + $									

Table 1 イリジウム錯体のりん光寿命測定から見積もった担癌マウスの組織中の酸素分圧

¹ S. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita, T. Takeuchi, *Cancer Res.*, **2010**, *70*, 4490-4498.