2P061

紫外光電子分光法・逆光電子分光法を用いた イオン液体の電子構造の研究

(名大院・理¹ 名大・VBL² 東京理科大・理工³)○佐藤 貴史¹、坂井 健太郎¹、 岩橋 崇^{1,2}、金井 要³、大内 幸雄¹

【序】イオン液体とは常温で液体相をとる塩であり、通常の分子性液体では見られない特異な性質を もつことから、様々な分野においてその応用に関する研究がすすめられている。合成や触媒の領域で は化学的安定性、広い温度範囲を持つ液相などの性質をグリーン溶媒として、また電解液への応用へ の研究がおこなわれている。しかしながら物理化学に立脚した研究は未だ途上にあり、特に電子構造 については不明な点が多い。本研究ではカチオン7種類、アニオン5種類の組み合わせにおけるイオ ン液体の電子構造を紫外光電子分光法(UPS)、逆光電子分光法(IPES)を用いて調べ、HOMO 及び LUMO 付近の電子構造を明らかにし、カチオン・アニオンの効果を検討した。

【実験】試料には関東化学製高純度イオン液体(H₂O<15ppm、Cl⁻<5ppm)を用いた。イオン液体の占 有準位は He I 共鳴線(21.22eV)を用いた UPS 測定により決定した。IPES は外部光電効果の逆過程を利 用して非占有状態を観測する手法である。IPES には検出するエネルギーを一定にし、入射するエネル ギーを掃引する様式(isochromat mode)と、入射するエネルギーを一定にし、放出される光のスペクトル を測定する様式(constant initial state mode)があるが、本研究では前者の様式を用いた。電子銃には傍熱 型の BaO を使用している。Figure 1 に IPES の原理図を示した。

基板にはアセトン、イソプロパノール で洗浄した金基板を用いた。サンプルホ ルダーにカーボンテープで基板を固定し、 イオン液体を 60µm の厚さになるように 塗布した後、超高真空槽に導入した。イ オン液体内部に存在する溶存気体を放出 させるため、UPS では4時間以上、IPES では約1日超高真空下に放置してから測 定を行った。UPS、IPES のベースプレッ シャーは各々2×10⁻⁸Pa、2×10⁻⁷Pa である。

【結果・考察】今回測定したイオン液体の UPS、IPES スペクトルの結果と分子構造式を Figure 2 に示した。この実験結果から、カチオンがイミダゾリウムから4級

アンモニウムに変わると HOMO が高束縛エネルギー側にずれ込むという結果になった。さらに HOMO だけでなく、LUMO や HOMO-LUMO ギャップ(*E*g)もイミダゾリウムカチオンと 4 級アンモニウムとの 間で差が生じている。このことを MO 計算結果(Table 1)と比較するとイミダゾリウムカチオンはアンモ

ニウムカチオンより Egが狭いが、 一方で[TFSA]アニオンはイミダ ゾリウムカチオンや[DEME]⁺より 広く、他のアンモニウムカチオン よりは狭い。Figure 2 で見られる ように HOMO と LUMO の実験結 果は計算結果とは異なっており、 カチオン、アニオンそれぞれが低 エネルギー側、もしくは高エネル ギー側にシフトしている。このエ ネルギー変化はカチオンとアニオ ンの軌道エネルギーを安定化、不 安定化させるマーデルングエネル ギーの寄与及び分極エネルギーの 寄与によるものだと考えられる。 MO 計算結果と実験結果との比較、 及び類似の塩である[DEME][BF4] との比較から、[イミダゾリウムカ チオン][TFSA]はHOMO、LUMO 共にカチオン、[DEME][TFSA]は HOMO はカチオン、LUMO はアニ オン由来、[4級アンモニウムカチ

Figure 2 [TFSA] 塩の UPS、IPES スペクトルとイオン液体の分子構造式

Ion	HOMO / eV	LUMO / eV	E_{σ}/ eV
[bmim] ⁺	-11.79	-5.13	6.66
[emim] ⁺	-11.91	-5.23	6.68
[P13] ⁺	-13.22	-3.84	9.38
[P14] ⁺	-12.59	-3.77	8.75
[PP13] ⁺	-12.99	-3.66	9.33
[TMPA] ⁺	-13.35	-4.00	9.35
[DEME] ⁺	-10.82	-3.70	7.12
[TFSA]	-4.36	+3.02	7.38

Table 1 Gaussian 03 を用いた B3LYP/6-311+G**における孤立イオン の分子軌道計算結果

オン][TFSA]は HOMO、LUMO 共にアニオン由来と考えられる。この結果から推測されるエネルギー ダイアグラムを Figure 4 に示した。詳細は当日報告する。

Figure 4 (a) [emim][TFSA]、[bmim][TFSA] (b) [DEME][TFSA] (c) [other ammoniumbased][TFSA]のエネルギ ーダイアグラム

【参考文献】

K. Kanai et al., J. Elect. Sp. and Relat. Phenom. 2009, 174, 110

- D. Yoshimura et al., J. Elect. Sp. and Relat. Phenom. 2005, 144-147, 319
- K. Kanai et al., J. Chem. Phys. 2008, 129, 224507