SO₂/O₂系におけるスーパーオキシド化学: Peroxy 型 S₂O₆-の生成と構造

(東大院総合) 〇鈴木卓人, 中西隆造, 永田 敬

【序】スーパーオキシドイオン O_2 ⁻は電子束縛エネルギーが比較的小さい(0.45 eV)ため、その 主たる反応過程は電子移動による1電子還元 O_2 ⁻+ $M \rightarrow M$ ⁻+ O_2 である.一方、クラスタリン

グによって実効的に O_2^- の電子束縛エネルギーを増大させると、電子移動反応が抑制され、付加反応的にperoxy化合物を生成することが期待される.この反応スキームを利用して、我々は O_2^- ·(H₂O)_nとSO₂との反応で図1に示すようなperoxy型SO₄⁻、すなわちOOSO₂⁻が生成することを見出した[1].さらに、SO₂/O₂クラスターへの低速電子付着でも同様にOOSO₂⁻が生成することを確認した.SO₂/O₂クラスターでは、O₄⁻·(O₂)_nが反応試剤として働くと予想される.

上述の結果を踏まえ、本研究では、SO₂/O₂クラスター への電子付着で生成する、より大きなperoxy型イオン種 を探索した.特に、量子化学計算で予測されているS₂O₆⁻ (scheme 1)[2]について、光電子分光と量子化学計算を併 用して幾何構造・電子構造に関する情報を得た.

【実験・計算】TOF 型質量分析計と磁気ボトル型光電子分光計を用 いて、以下のような測定を行った.SO₂(1%)/O₂(10%)/Ar 混合ガス をよどみ圧 1.5 atm でパルスバルブから真空中に導入し、電気衝撃 イオン化法によって S₂O₆⁻を生成した.生成したイオンを質量選別 した後、223 nm (5.56 eV)で光電子スペクトルを測定した.223 nm 光源には、4.5 atm の H₂に 355 nm レーザー光を集光して得られる 4次のアンチストークス光を用いた.また、光脱離と競合すると 予想される光解離過程への分岐比を調べるために、266 nm におけ る S₂O₆⁻の光分解質量スペクトルを測定した.計算には Gaussian03

図 1. OOSO₂⁻の安定構造[1] (a) 結合長(Å), (b)結合角(°), (c)SOMO の形状.

を用い, B3LYP/6-311+G(d)レベルで構造最適化および基準振動解析を行った.得られた各構 造について, CCSD(T)/6-311+G(d)レベルの1点計算によって安定化エネルギーと垂直電子脱 離エネルギー(VDE)を算出した.

【結果と考察】S₂O₆⁻の光電子スペクトル:図2に223 nm で測定した光電子スペクトルを示 す.スペクトルには構造のない幅広いバンドが測定された.バンドの極大位置からS₂O₆⁻の VDEを4.49±0.02 eV と決定した.この値はOOSO₂⁻の VDE = 3.78 ± 0.02 eV と比較して0.7 eV 程度大きい.(SO₂)_n⁻(n = 2 - 6)の光電子スペクトルで観測される溶媒和によるバンドシフ ト量が0.3 - 0.45 eV であることを併せて考えると、本研究で生成したS₂O₆⁻はOOSO₂⁻に中性 SO₂が溶媒和した構造をもつとは考え難い.また、(SO₂)₂⁻の VDE = 2.76 ± 0.02 eV とは約1.7 eV の差があり、S₂O₆⁻がS₂O₄⁻·O₂構造をもつ可能性も低い.したがって、光電子分光の結果 は、S₂O₆⁻が分子イオンを形成していることを示唆するものである.

一方,266 nm で測定した光分解質量スペクトルから,光脱離および光解離過程に関して 次のような分岐比が得られた.光脱離:77%,O₂⁻生成:2%,SO₂⁻生成:16%,SO₃⁻生成: 4%,SO₄⁻生成:1%.この結果は,図1に示した光電子スペクトルのキャリアがS₂O₆⁻自身で あることを保証するものである.また、光解離過程の中で SO_2 ⁻生成の分岐比が最も大きい点は $OOSO_2^-$ の光分解過程と類似であり、 $S_2O_6^-$ の構造に $OOSO_2^-$ の骨格が保持されている可能性を示唆している.

量子化学計算:計算で得られた3つの局所安定構造 および構造パラメータを図3に示す.安定化エネル ギーの順に異性体 I – III とした.各異性体は OOSO₂の異なる O 原子の位置に SO₂が付加した構 造に相当する.各異性体の全エネルギーと VDE を 表1に掲げる.

最安定構造であり、かつ VDE の計算値が最も実 測に近いのは異性体 I であるが、実測と計算の差は 約 0.9 eV あり、現段階で光電子スペクトルのキャリ アを異性体 I に断定的に帰属することはできない.

今回の計算で得られた異性体 I は、文献[2]に報告されている構造 1 とは S-O 結合の周りに 回転異性の関係にある.振動解析によれば、S-O 結合周りの SO₂ rocking モードは極めて低

units)

い振動数($\approx 20 \text{ cm}^{-1}$)を持つことから,異性体 I は 大振幅振動を伴う構造の柔軟(floppy)な分子イオ ンと考えられる.既に OOSO₂⁻に関する文献[4]で も指摘されているように,O₂-SO₂結合の性質は 共有結合よりも van der Waals 結合に近い可能性 がある.これは,S-O 結合長の推定値が 2.33 Å であることと矛盾しない.一方,Mulliken charge population に着目すると,異性体 I の何れの O 原 子も-0.19~-0.42 の値を持ち,余剰電荷は分子全 体にわたって非局在化している.この電荷の非局 在化は,O₂-SO₂間に強い共有結合が形成されて いないにも拘わらず,S₂O₆⁻が大きな VDE を示す 要因と考えられるが,今後,中性状態の安定構造 も含め,より高精度の計算を用いた検討が必要で ある.

が実測データ,実線がガウス関数に よるフィッテングを示す.

図 3. S₂O₆-の安定構造と結合長 (Å)

以上のように、 SO_2/O_2 クラスター系を利用して peroxy 型 S_2O_6 負イオンの形成を示唆する結果が得られた. このような peroxy 型イオンの生成は、クラスター環境を利用した気相スーパーオキシド化学の特徴といえる.

異性体	全エネルギー (ha)	$\Delta E (eV)$ -	VDE (eV)	
			3重項	1重項
$\mathbf{I}(C_1, {}^{2}\mathbf{A})$	-1245.74038	0.00	3.60	4.64
II (C ₁ , 2 A)	-1245.73763	0.08	3.26	4.35
III (C ₁ , 2 A)	-1245.73691	0.10	3.31	4.34

表 1. S₂O₆-異性体の各種エネルギー

[1] S. Zama, R. Nakanishi, M. Yamamoto, and T. Nagata, J. Phys. Chem. A 114 (2010) 5640.

[2] M. L. Mckee, J. Phys. Chem. 100 (1996) 3473.

[3] T. Tsukuda, T. Hirose and T. Nagata, Int. J. Mass Spectrom. 171 (1997) 273.

[4] W. Zheng, K.-C. Lau, N.-B. Wong and W.-K. Li, Chem. Phys. Lett. 467 (2009) 402.