2D16

 アゾベンゼン部位を含むデヒドロベンゾ[12]アヌレン誘導体の多孔性2次元 ネットワーク:空孔へのゲスト吸着に及ぼすアゾベンゼン部位の影響
(阪大院基礎工¹, KU Leuven²) 〇田原一邦¹, 犬飼晃司¹, Jinne Adisoejoso², Steven De Feyter², 戸部義人¹

最近、固体表面において分子の自己集合により形成される二次元分子ネットワーク における化学反応の制御を目的とした研究が盛んになされている。中でも、フォトク ロミック分子の表面やその近傍における異性化反応の走査型トンネル顕微鏡(STM) による観察や、異性化反応を利用した分子ネットワーク構造のスイッチングに関する 研究に注目が集まっている。例えば、超高真空下においては、光照射¹、STM 探針か らのトンネル電子の注入²または電場による表面でのアゾベンゼンの異性化³の STM 観察に関する研究などが報告されている。また、固液界面ではアゾベンゼン誘導体を 用いて、異性化に伴うネットワークの構造変化に関する報告がなされている⁴。今回 我々は、アゾベンゼン部位の光異性化に伴う構造変化を利用した多孔性ネットワーク の空孔サイズ制御とゲスト共吸着に与える影響について調査を行った。その結果、ア ゾベンゼン部位の光異性化に伴いネットワークの一部の空孔サイズが変化し、吸着さ れるゲスト分子の数が変化することが明らかになったので以下報告する。

ネットワークの構成分子として六つの長鎖アルコキシ 基を有するデヒドロベンゾ[12]アヌレン (DBA) 誘導体1 を選択した。この分子は有機溶媒/グラファイトの界面 において多孔性のハニカム構造を形成することが分かっ ている⁵。なお、このときアルコキシ基の鎖長を変化させ ることで、空孔のサイズを制御できることも明らかにし ている。この DBA に直鎖のアルコキシ基と末端にアゾ ベンゼン部位を含むアルコキシ基を交互に導入した分子 は、アゾベンゼン部位を空孔中央に配向しながらハニカ ム構造を形成すると考えた。また、アゾベンゼン部位の 吸着状態を安定化させるために、アゾベンゼン部位に二 つのカルボキシ基を導入することとした。以上の設計に 基づき、アゾベンゼン部位を三つ含む DBA 誘導体 2 を 合成した。合成した2の1-オクタン酸溶液により光異性 化挙動について調査したところ、313 nm の紫外光を照 射すると8分以内で光定常状態に達し、そのときの cis 体の割合は57%であった。

全てのSTM観察は1-オクタン酸/グラファイト界面にて行った。図1aに2のtrans 体が形成する自己集合体のSTM像を示す。一部で構造の特定できない部分が存在す るものの、ハニカム構造の形成が確認された。なお、このときアゾベンゼン部位は空 孔に吸着され水素結合により環状構造を安定に形成していることが明らかとなった。 一方、あらかじめ紫外光を照射し、光定常状態に達している2を用いて同様の実験を 行ったところ、構造の特定できない領域が多く存在し、一部でのみハニカム構造の形 成が観察された。なお、ハニカム構造の空孔に着目すると、全てのアゾベンゼン部位 が表面において確認された。そのため、cis体を含む2は表面で凝集体を形成するか 溶液中に存在しており、trans体のみがハニカム構造を形成したと考えられる。

Figure 1. (a) An STM image of a monolayer of *trans*-2. (b) An STM image of a monolayer of a mixture of *trans*-2 and coronene. (c) An STM image of a monolayer of a mixture of 2 and coronene after irradiation of UV light (320 nm) for 10 min. The red, white, and green arrows indicate four adsorbed coronenes, two adsorbed coronenes, and fuzzy pore, respectively.

次に、*trans*体の2とコロネンをあらかじめ混合した溶液を用いて同様の実験を行った。その結果、ハニカム構造の全ての空孔に一分子のコロネンが吸着されることが分かった(図1b)。なお、光定常状態のサンプルを用いて同様の実験を行ったが、ハニカム構造の空孔におけるコロネンの吸着数に変化は見られなかった。

続いて、固液界面において形成される二次元分子ネットワークに対する光照射を行った。1-オクタン酸/グラファイト界面において *trans* 体の2 が形成する自己集合体に対し、320 nm の紫外光を10分間照射した後、コロネンの1-オクタン酸溶液を表面に滴下した。その結果、非常に興味深いことに一部の空孔に2~4個のコロネンが吸着されることが分かった(図1c)。また、同時にぼやけた空孔も観察された。吸着されたコロネンの数について、数枚の STM 画像から統計的に分析したところ Table 1 に示す結果が得られた。このこ

とから、アゾベンゼン部位の cis 体への異性化に伴い空孔のサイ ズが拡大し、吸着されたコロネ ンの数が増加したと考えられる。 さらに、上記の 320 nm の光を 照射した後の試料に対し 400~ 420 nm の光を照射したところ、 空孔に吸着されたコロネンの数 が減少した。これは、trans 体へ

Table 1. Number of adsorbed coronene molecules at the po	re.
--	-----

number of coronene	trans-2	after irradiation (320 nm)	after irradiation (400 nm)
1	100%	73%	92%
2	0%	16%	3%
3	0%	3%	0%
4	0%	0.2%	0%
Fuzzy	0%	7.5%	5%

の異性化が進行したことを示している。

以上のように、アゾベンゼン部位の光異性化を利用することにより、固液界面にお いて形成される多孔性分子ネットワークの空孔サイズを変化させうることを明らか にした。

References

1) Tegeder, P. et al. Chem. Phys. Lett. 2007, 444, 85.

- 2) Morgenstern, K. et al. Angew. Chem. Int. Ed. 2006, 45, 603.
- 3) Hecht, S.; Grill, L. et al. J. Am. Chem. Soc. 2006, 128, 14446.
- 4) De Schryver, F. C. et al. J. Phys. Chem. 1996, 100, 19636.
- 5) De Feyter, S.; Tobe, Y. et al. J. Am. Chem. Soc. 2006, 128, 16613.