アセナフテン系 π アクセプター分子 DCNA を用いた金属錯体の合成と物性 (大阪電通大・院工) 〇鎌田吉拡, 荒木将茂, 青沼秀児

シアノイミノ(=N-C=N)基の配位能を持つ π アクセプター分子として DCNQI が知られており、分子性導体(DCNQI) $_2$ Cu は銅への配位を介した π -d 相互作用によって特異な物性を示す $^{[1]}$ 。DCNQI は para 位にシアノイミノ基をもつ。これに対して我々は新しい π -d 相互作用系の実現を目指し、ortho 位にシアノイミノ基をもつ π アクセプター分子としてアセナフテン骨格をもつ DCNA を合成した $^{[2]}$ 。DCNA は DCNQI と比較して対称性が低く、新たな電子構造の実現が期待できる。無置換の DCNA はアクセプター性が低いため、アクセプター性の向上を目指し、ハロゲン置換体を合成してきた。今回、そのアニオンラジカル塩による分子性導体を合成した。また、DCNA を架橋二座配位子とする磁性金属錯体についても報告する。

$$X \xrightarrow{E_1} X^{\bullet} \xrightarrow{E_2} X^{2-}$$
 (1) $H^0 H H^{2-}$ 全電子エネルギー $\varepsilon^0 \varepsilon^-$ LUMO のエネルギー準位

表1. 計算方法による相関係数rの比較

		PCM ^a	E_1 VS. ε^0	E_1 vs. ΔH_1	E_2 VS. ε^-
UHF	6-31G(d,p)	なし	-0.993	-0.928	-0.350
	6-31G(d,p)	あり	-0.996	-0.995	-0.995
	6-31G(d,p) ^b	なし	-0.992	-0.990	-0.804
	6-31G(d,p) ^b	あり	-0.996	-0.998	-0.996
	CEP-121G	なし	-0.981	-0.983	-0.628
UB3LYP	6-31G(d,p)	なし	-0.995	-0.951	-0.759
	6-31G(d,p)	あり	-0.987	-0.995	-0.997
	6-31G(d,p) ^b	なし	-0.991	-0.993	-0.974
	6-31G(d,p) ^b	あり	-0.993	-0.997	-0.999

^a SCRF=(PCM, Solvent=acetonitrile) ^b ヨウ素原子にはCEP-121Gを適用

表2. DCNA誘導体のCV法で測定した実験値とab initio-MO法による計算値の比

化合物		実験値 ^a			計算値 ^b			
	Χ	Υ	E_1 / V	E_2 / V	<i>∆E</i> / V	E_1 / V	E_2 / V	∆E / V
DCNA	Н	Н	-0.464	-1.190	0.729	-0.487	-1.225	0.738
DF - DCNA	F	Н	-0.416	-1.150	0.730	-0.447	-1.175	0.728
DCI-DCNA	CI	Н	-0.360	-1.080	0.720	-0.351	-1.071	0.720
DCI-DCNA-CI ₂	CI	CI				-0.345	-0.811	0.466
DBr-DCNA	Br	Н	-0.351	-1.070	0.722	-0.339	-1.044	0.705
DI-DCNA	I	Н				-0.327	-1.035	0.708
DCI-DCNA-F ₂	CI	F				-0.327	-1.090	0.764
DI-DCNA-F ₂	I	F				-0.306	-0.972	0.666
DMe-DCNQI	Ме	Ме	-0.229	-0.870	0.644	-0.190	-0.831	0.641
MeI-DCNQI	Ме	I	-0.028 ^c	-0.633 ^c	0.605 ^c	-0.004	-0.622	0.618
DI-DCNQI	- 1	I	0.182 ^c	-0.448 ^c	0.630 ^c	-0.164	-0.458	0.622
CII-DCNQI	CI	I	0.192 ^c	-0.438 ^c	0.630 ^c	-0.179	-0.458	0.636

^a V vs Ag/AgNO₃ in 0.1M TBAP/CH₃CN. ^b UHF/6-31G(d,p), ヨウ素原子にはCEP-121Gを適用, SCRF=(PCM, Solvent=acetonitrile). ^c S.Hünig et al., *Synthetic Metals*, **1991**, *41-43*, 1781; S.Hünig et al., *Eur. J. Org. Chem*. **1998**, 335 を換算して使用。

て予想した E_1 と E_2 を表 2 に示した。既知の化合物に関して平均誤差 0.02 の精度で実験値を再現している。また、この結果から、5,6-位へのョウ素置換及び 3,8-位へのフッ素置換がアクセプター性向上に有効であることが分かった。また、3,8-位への塩素置換が E_1 と E_2 の電位差 ΔE の減少に有効であることが示唆された。これらの化合物の合成について現在取り組んでいる。

[アニオンラジカル塩の作製] 無置換 DCNA を LiClO₄ 共存下で電解還元すると黒色針 状晶が得られ、その電気伝導率はおよそ 10^{-5} S/cm であった。同様に CuI 共存下での電解還元法によって黒色粉末が得られた。両者の IR スペクトルにおける C=N および C=N の伸縮振動の低波数シフトから、DCNA 上の電荷は約 0.5-であると考えられる。 [M(hfac)₂錯体の作製] [M(hfac)₂](M=Mn, Co, Ni, Cu)と DCNA を CHCl₃ 中でリフラックスすることにより、金属錯体の作製を行った。各生成物の IR スペクトルにおける C=N の伸縮振動の高波数シフトから、末端のシアノ基が金属に配位していると考えられる。

【参考文献】

- [1] R. Kato, Bull. Chem. Soc. Jpn., 2000, 73, 515 and references cited therein.
- [2] S. Aonuma, E. Fujiwara, T. Kanzawa and Y. Hosokoshi, *J. Phys.: Conf. Ser.*, **2008**, *132*, 012027.
- [3] 荒木将茂, 鎌田吉拡, 青沼秀児, 本分子科学討論会, 3P048.
- [4] M. J. Frisch et al., Gaussian, Inc., Wallingford CT, 2009.