2A20 He-HCN の解離限界付近の分子間振動遷移のミリ波二重共鳴分光

(九大院理) 〇原田賢介・田中桂一

【序論】He^{\Box}HCN は極めて弱く結合した分子錯体($D_0 = 9 \text{ cm}^{\Box 1}$)で、HCN 部分は自由回転に近い運動をしている。He-HCN のエネルギー準位を図 1 に示した。ここで *j* は HCN の内部回転の角運動量量子数、*l* は錯体全体の回転の角運動量量子数、*J* は全角運動量量子数である。

我々は *j*=1-0 の内部回転基本音(図 1 青矢印)を観測した¹⁾。純回転遷移 は MBER 法²⁾により報告されている。 また解離限界付近に存在する内部回 転第 2 励起状態(*j*=2)および分子間伸 縮第 1 励起状態(*v*_s)への分子間振動 遷移(図 1 緑、紫矢印)を観測した³⁾。

今回、さらに図1赤矢印で示す *j*=2-1 内部回転遷移を観測したので報 告する。これらの遷移の上側の準位は、 -(-1)^Jのパリティーを持ち、*f*準位とラ ベルされる。これらの準位は分子間 ポテンシャルからの計算では、He 原子

図 1. He-HCN のエネルギー準位

とHCNの基底状態への通常の解離エネルギーより高いエネルギーを持っていると予想される。これらの 準位はHCN分子の回転が1つ励起された状態にしか解離できない。そのためこれらの準位は全エネ ルギーが正であるにもかかわらず安定な結合状態である。同様の結合状態は、He-HF分子の赤外ス ペクトルの観測により、He-HF分子のHF振動励起状態について観測されている⁴⁾。

【実験】 通常の解離エネルギーより上に存在する 準位への遷移は下の準位のポピュレーションが少な く強度が弱いためミリ波二重共鳴法により帰属を 確定した。図2に用いた装置を示す。観測する *j*=2-1 遷移と一準位を共有する*j*=1-0 遷移をポンプ する。ポンプ光はビームスプリッターによりプロー ブ光と重ねて多重反射セルに入射する。ポンプ光の 偏光面はプローブ光の偏光面と90°異ならせておき 検出器の直前でワイヤーグリッド偏光子を用いてポ ンプ光をカットしプローブ光のみを InSb 検出器で

図 2. ミリ波・ミリ波二重共鳴

観測した。HCN を 0.3% 含む He ガスをパルスジェットノズルから押し圧 25 atm で噴射して He-HCN 錯体を生成し、ポンプ光を入射したときのシグナルの強度変化を観測した。回転温度は 3K 程度と推定される。

今回観測された *l*=2 の *j*=2-1 内部回転遷移を図 3 に示す。176GHz 付近で観測され S/N=3、線幅 0.8 MHz で観測された。この遷移の下準位と、上準位を共有する *j*=1-0 遷移をポンプすると、下準

位のポピュレーションがポンプされるため、 図に示すようにシグナルの強度が 2 倍に増加した。 これよりこの遷移は $J=1^{f}-1^{e}$ の遷移と帰属された。 同様に $J=3^{f}-2^{f}$ 及び $3^{f}-3^{e}$ 遷移も観測された。

【考察】これらの遷移の上準位は、通常の解離エ ネルギーより J=1 で 1.34cm⁻¹、J=3 で 1.56cm⁻¹ 上にあるが、いずれの遷移でも線幅の広がりは観 測されておらず、早い解離は起こさない準位であ ることが分かる。解離の課程では全角運動量 J、 エネルギーE、及びパリティーが保存される。

He-HCN ではパリティーは(-1)^{*j*+*l*}で表される。*e*,*f*のラベルは、(-1)^{*j*}がパリティーに等しいとき*e*、-(-1)^{*j*}がパリティーに等しいとき*f*となる。よって(-1)^{*j*+*l*-*j*}により*e*,*f*が決まる。全角運動量とパリティーが保存されるため解離過程で*e*,*f*ラベルも保存される。

解離が起こると内部回転 j は、骨格の回転 l に変換され 全角運動量は保存される。余剰エネルギーは解離座標

(分子間伸縮座標)の運動エネルギーへ移ってゆき全エネ ルギーは保存される(図 4)。骨格の回転エネルギーは *R*=∞

では0に収斂するため、無限遠 $R=\infty$ における系のエネルギーはどのJでも分子間の相対運動エネ ルギーと HCN の回転エネルギーの和で表される。無限遠でeレベルの一番下の状態はj=0, J=l準 位であるが、f準位の最低状態はj=1, J=l準位である。よって $e \ge f$ 準位は異なる解離限界を持ち、

f準位は HCN の回転の第1 励起状態へし か無輻射的には解離できない。

観測された分子間振動遷移の遷移周波数を再 現するように分子間ポテンシャル V(R, θ)を決 定した。得られた分子間ポテンシャルから計算 すると解離限界より上に存在すると予想される 結合性のf準位は、今回観測された4つのみで ある(表 1)。これらの状態のエネルギーは0よ

り大きく HCN の j=1 状態のエネルギー2.956cm⁻¹より低 い。分子間距離<R>、平均二乗振幅<ΔR²>^{1/2}は他の結合 状態と近い値を取る。このうち l=1 の結合性f準位の波 動関数の確率密度を図5に示すが、明らかに結合状態で あることが分かる。このような準位の観測は、分子錯体 の振動基底状態では初めての例である。遠心バリアーで 捕捉された準安定状態(図1 点線)についても議論する。 1. JCP, 117, 7041 (2002). 2. JPC, 99, 2646 (1995).

3. 分子構造総合討論会 3D05 (2007). 4. JCP, 93, 5387 (1990).

図3. 観測されたスペクトル

図 4. He-HCN の解離過程

f States over the Dissociation Limit						
j	1	J	<i>E</i> (cm ⁻¹)	eQq _J (MHz)	⟨ R ⟩(Å)	<⊿ R ^{2>1/2} (Å)
f-state (HCN: $j = 1, 2.956 \text{ cm}^{-1}$)						
1	5	5	2.1890	-1.290	4.467	0.764
2	1	2	0.4257	0.651	4.199	0.582
2	2	1	1.3410	-0.471	4.352	0.593
2	2	3	1.5642	0.314	4.242	0.600

図 5. 波動関数の確率密度