1P120

窒素分子三重項 Rydberg 状態D³Σ' とG³Π の前期解離に関する理論的研究

慶大院理工 〇櫻本和弘・藪下聡

【序論】N₂分子の三重項 Rydberg 状態としてD³ Σ_{u}^{+} ,E³ Σ_{g}^{+} ,G³ $\Pi_{u}^{-1,3}$ が知られている。2005 年に Fujino らは,D³ Σ_{u}^{+} -E³ Σ_{g}^{+} 遷移とG³ Π_{u}^{-} -E³ Σ_{g}^{+} 遷移の回転スペクトルを調べ⁴⁾,J(J+1)の増加とともに,前者の半値幅は増大するが,後者では逆に減少することを明らかにした。本研究では,Kanamori らに従い,この現象が電子一回転相互作用によるD³ Σ_{u}^{+} -G³ Π_{u} 状態の混合とG³ Π_{u} 状態から解離性C'³ Π_{u} 状態への前期解離に帰因するとし,半値幅の理論的評価を試みた。

【理論】分子の回転が速くなると,小さな確率ながら電子は核の動きに追随できなくなり,電子状態の混合が生じる。ここで考える $D^{3}\Sigma_{u}^{+}, G^{3}\Pi_{u}$ Rydberg 状態は, N_{2}^{+} イオンのまわりを,電子がそれぞれ広がって近縮退した $3p\sigma_{u}, 3p\pi_{u}$ 軌道に入ってゆるく束縛された状態であり,2つの電子状態の混合はより顕著である。この現象により, $D^{3}\Sigma_{u}^{+}$ 状態は一部 $G^{3}\Pi_{u}$ 状態の性質を持ち,その $G^{3}\Pi_{u}$ 状態から解離性 $C'^{3}\Pi_{u}$ 状態への前期解離によって半値幅が生じる。一方 $G^{3}\Pi_{u}$ 状態に一部 $D^{3}\Sigma_{u}^{+}$ 状態の成分が含まれることにより,元々 $G^{3}\Pi_{u}$ 状態が持つ解離性 $C'^{3}\Pi_{u}$ 状態への前期解離の性質が,その混合分だけ失われる。この混合の割合がJ(J+1)に依存するので,半値幅もJ(J+1)に依存すると考えられる。この電子状態の混合は,L-uncoupling operator $(1/2\mu R^{2})(J^{+}L^{-}+J^{-}L^{+})$ により表され,混合後の電子状態は摂動論によって評価できる。

【計算】 $E^{3}\Sigma_{g}^{*}$ 状態から遷移した $D^{3}\Sigma_{u}^{*}$ (or $G^{3}\Pi_{u}$)状態が,電子一回転相互作用により ($D^{3}\Sigma_{u}^{*}$ と $G^{3}\Pi_{u}$)の二成分からなる状態へと混合後,その一部である $G^{3}\Pi_{u}$ 状態が解離 性 $C'^{3}\Pi_{u}$ 状態へと前期解離することが原因であるという方針の下,計算を行った。

まず N₂分子の各電子状態のポテンシャルエネルギー曲線を基底関数 aug-cc-pVTZ に Rydberg 基底関数を加えたものを用いて COLUMBUS による SDCI 計算で求めた (図 1)。この結果と朱-中村理論を用いて,C'³ $\Pi_u \leftarrow G^3 \Pi_u(v=0,1)$ の前期解離による擬 交差点を一回通過する際の非断熱遷移確率*p*を求め,その遷移確率*p*と振動数*v*の積に より前期解離の単位時間当たりの非断熱遷移確率(i)を求めた。また L-uncoupling operator を摂動項として,混合後の $G^3\Pi_u$ (or $D^3\Sigma_u^+$)状態の存在確率を摂動論により重 み a²(ii)として評価した。結果(i),(ii)より $D^3\Sigma_u^+ \rightarrow (D^3\Sigma_u^+ \text{ mixing with } G^3\Pi_u) \rightarrow C'^3\Pi_u$ の過程および $G^3\Pi_u \rightarrow (G^3\Pi_u \text{ mixing with } D^3\Sigma_u^+) \rightarrow C'^3\Pi_u$ の過程による各々の単位時間 当たりの崩壊確率 *P*を求め,単位時間当たりの崩壊確率の逆数,つまり寿命 τ (=1/*P* =1/a²*pv*)とエネルギーの不確定性関係 $\Gamma = \hbar/\tau$ から $D^3\Sigma_u^+(v=0,1)$ 状態と $G^3\Pi_u(v=0)$ 状態の半値幅を求めた(表 1)。

【考察】前述した現象について, $D^{3}\Sigma_{u}^{+}(v=0)$ は定量的に良い一致を示せた が, $D^{3}\Sigma_{u}^{+}(v=1)$ は定性的な一致のみ示すことに留まった。後者の不一致の原因として $C'^{3}\Pi_{u} \leftarrow G^{3}\Pi_{u}(v=1)$ の半値幅の計算値が実験値に比べて小さいことが上げられる。こ のとき $C'^{3}\Pi_{u} \leftarrow G^{3}\Pi_{u}(v=1)$ の半値幅の値のみ実験値を用いて計算し直す と, $D^{3}\Sigma_{u}^{+}(v=1)$ の半値幅のJ 依存性は4×10⁻⁴×J(J+1)+2.2×10⁻¹²×[J(J+1)]² cm⁻¹と なり,改善された。また $G^{3}\Pi_{u}(v=0)$ については定性的な一致を得ることもできなかった。 特にこの原因について, $G^{3}\Pi_{u}$ 状態は $^{1}\Pi_{u}$, $^{5}\Pi_{u}$ によってスピン軌道相互作用による混 合を起こすことが考えられるので,その解明を試みている。

	$D^{3}\Sigma_{u}^{+}(v=0)$	$D^{3}\Sigma_{u}^{+}(v=1)$	$G^{3}\Pi_{u}(v=0)$
実験值 ⁵⁾ (cm-1)	$3.0 \times 10^{-5} \times J(J+1)$	$2.7 \times 10^{-4} \times J(J+1)$	$0.146 - 2.0 \times 10^{-4} \times J(J+1)$
実験値 ⁶⁾ (cm ⁻¹)	$4.2 \times 10^{-6+} 1.0 \times 10^{-5} \times J (J+1)$ -9.3 × 10 ⁻⁸ × [J (J+1)] ²⁺ 2.2 × 10 ⁻¹⁰ × [J (J+1)] ³	$\begin{array}{c} 3.7 \times 10^{.4} + 5.2 \times 10^{.4} \times J \left(J + 1 \right) \\ + 7.8 \times 10^{.7} \times \left[J \left(J + 1 \right) \right]^2 + 1.7 \times 10^{.9} \times \left[J \left(J + 1 \right) \right]^3 \end{array}$	×
計算值(cm ⁻¹)	$9.2 \times 10^{-6} \times J (J+1) + 2.5 \times 10^{-8} \times [J (J+1)]^2$	$3.9 \times 10^{-5} \times J (J+1) + 3.6 \times 10^{-8} \times [J (J+1)]^2$	$0.11+4.0\times10^{4}\times J(J+1)$ -1.0×10 ⁻⁸ ×[J(J+1)] ²

表1回転スペクトルの半値幅の J 依存性

 $1) D^{3}\Sigma_{u}^{+}:(1\pi_{u})^{4}(3\sigma_{g})(3p\sigma_{u}), E^{3}\Sigma_{g}^{+}:(1\pi_{u})^{4}(3\sigma_{g})(3s\sigma_{g}), G^{3}\Pi_{u}:(1\pi_{u})^{4}(3\sigma_{g})(3p\pi_{u}),$

C^{'3}Π_u:($1\pi_{u}$)³($3\sigma_{g}$)($1\pi_{g}$)², C³Π_u:($2\sigma_{u}$)¹($1\pi_{u}$)⁴($3\sigma_{g}$)²($1\pi_{g}$)¹ 2)H.Kanamori,S.Takashima,andK.Sakurai,*J.Chem.Phys.***95**,80(1991) 3)T.Hashimoto and H.Kanamori,*J.Mol.Spectrosco.***235**,104(2006) 4)亀山 文孝,藤野 泰秀,金森 英人,分子構造総合討論会,2P102(2006) 5)藤野 泰秀 東京工業大学大学院 理工学研究科 修士論文(2006) 6)B.R.Lewis et al. JCP,**129**,164306(2008) ; JCP,**129**,204303(2008)