1P092

Sapporo 基底関数 : 57La - 71Lu の高性能縮約型基底関数の開発

(苫駒大¹,北大院理²,室工大院工³,室工大技術部⁴)

○関谷 雅弘¹, 野呂 武司², 古賀 俊勝³, 島崎 剛⁴

【序】 我々は、₁H 原子から 103Lr 原子までの電子相関用基底関数[1]を開発した。それらの関数は 一般的な、DZP、TZP、QZP 基底関数と組み合わせて使うことを前提に作成した。また、 $_{19}$ K - $_{54}$ Xe 原子と $_{57}$ La - $_{71}$ Lu 原子に対して、それらと組み合わせるために相対論的効果を考慮したセグメント 型縮約基底関数も作成した。しかし、これらの原子価用基底関数と電子相関用の基底関数をそのま ま組み合わせると、原子によっては重複した関数が出現し、高精度ではあるがコンパクトさに欠ける 場合がある。これらの無駄な縮約や冗長性を取り除き、高精度を保ち規模の小さな DZP、TZP、QZP 基底関数 Sapporo の開発を行った。ここでは、 $_{57}$ La - $_{71}$ Lu 原子の基底関数について報告する。 $_{1}$ H - $_{54}$ Xe に関しては、2P092 で報告する。

【開発の概要と計算方法】 一般に分子の化学結合には、開殻内の電子が重要な役割を果たす。 高精度な Post-HF 計算においては、それらの電子相関を考慮する必要が生じる。つまり、開殻と同じ 主量子数である副殻の電子の電子相関も考慮する必要があり、高性能な基底関数にはそれらの電 子相関の記述能力も要求される。ランタノイド系列原子においては、4f 電子がある N 殻電子の電子 相関の記述能力が必要となるので、 N - P 殻の電子の電子相関を高精度で記述できるコンパクトで 高性能な基底関数を作成する。

DZP では、各殻に対して最大の方位量子数 l より 1 だけ大きな l + 1 までの関数を1個ずつ最小 基底に加え、TZP、QZP と大きくなるに従って、さらに 1 だけ大きな l まで1個ずつ関数を加える。 複数の殻を考える場合は、この手法をそれぞれの殻に適用して積算し、その合計を基本サイズとす る。例えばランタノイド系列原子の DZP は、P 殻を考えると占有軌道は 6s のみなので s とp、を 1 個 ずつ、O 殻は、5s と 5p が占有軌道で、原子によっては 5d も占有されるので s からf まで 1 個ずつ、 N 殻は 4f までが占有軌道なので s からgまで 1 個ずつ最小基底に加える。最小基底は 6s4p3d1f な ので、DZP は 9s7p5d3f1g となる。TZP は N から P 殻に対して、さらに 1 だけ大きな l まで1個ずつ関 数を DZP に加えるので 12s10p8d5f3g1h となり、QZP は 15s13p11d8f5g3h1i となる。

基底関数の開発手法は、理想とする原子価用関数と電子相関用関数を準備し、決められたサイズ と縮約パターンで、それらの双方を出来る限り再現するように最適化する。ただし、高性能かつコン パクトな基底関数を目指しているので、理想とする関数によって得られた電子相関エネルギーを著し く悪化させない範囲内で基底関数のサイズを縮小する。

本研究では、原子価用の理想とする関数として、昨年度の分子科学討論会で報告したセグメント型 縮約基底関数を使用した。電子相関用関数は、以前にランタノイド系列原子の電子相関用基底関 数[2]を開発したが、4s、4p、4d 電子の電子相関は考慮されていないので、新たに Configuration Interaction (CI)計算を行って自然軌道(NO)を求めた。CI 計算は、Inner (4s, 4p, 4d, 4f)電子間と Outer (5s, 5p, 5d, 6s)電子間の電子相関を考慮する2種類を実行し、得られた2組の NO を理想の 電子相関用関数として使用した。相対論的効果は、中嶋と平尾[3]による3次 Douglas-Kroll (DK3) 近似によって取り込み、原子核の取り扱いはガウス型有限核モデルを使った。 【結果】 表1に、DZPとTZPの結果を示した。表中の()内の値は理想の関数を使ったときに得られた電子相関エネルギーと比較した割合(%)である。 $_{59}$ Pr - $_{63}$ Eu原子、 $_{65}$ Tb - $_{70}$ Yb原子のDZP基底関数によって得られた相関エネルギーの割合はOuterが93 - 96%、Innerが95 - 97%となり、良好な基底関数である。5d 電子を持つ原子については、90%以下の再現性しかない場合もあり、改良を検討する。TZP基底関数は $_{57}$ La原子のInnerの結果以外は理想の関数をよく再現している。縮約パターンは、DZPが94321(5)/841(5)/72211/421/3、TZPは94321(7)/841(7)/721(5)/31(4)/211/2とした。TZPは11s9p7d5f3g1hで、s、p、d 関数が理想の関数より各1個少ないよりコンパクトな基底関数になっている。

QZP 基底関数と励起エネルギーなどによる性能評価は当日会場で報告する。

		DZP				TZP			
原子	電子配置	Outer		Inner		Outer		Inner	
₅₇ La	$6s^25d^1$	-0.19381	(87.0)	-0.50174	(86.2)	-0.26165	(99.7)	-0.63649	(92.8)
₅₈ Ce	$6s^24f^15d^1$	-0.17745	(90.9)	-0.54058	(92.3)	-0.22811	(99.7)	-0.69560	(96.1)
59Pr	$6s^2 4f^3$	-0.17276	(95.6)	-0.57887	(94.8)	-0.20591	(99.6)	-0.75620	(96.1)
₆₀ Nd	$6s^2 4f^4$	-0.17565	(95.1)	-0.60533	(95.3)	-0.20969	(99.5)	-0.80098	(96.3)
₆₁ Pm	$6s^2 4f^5$	-0.18143	(95.0)	-0.63914	(95.9)	-0.21593	(99.5)	-0.85176	(96.5)
₆₂ Sm	$6s^24f^6$	-0.18591	(94.8)	-0.67129	(96.1)	-0.22100	(99.4)	-0.90124	(96.7)
₆₃ Eu	$6s^2 4f^7$	-0.18524	(94.7)	-0.69926	(96.0)	-0.22034	(99.4)	-0.94576	(96.9)
64Gd	$6s^24f^75d^1$	-0.19105	(88.2)	-0.66481	(98.0)	-0.24767	(98.8)	-0.91374	(97.2)
₆₅ Tb	$6s^24f^9$	-0.18641	(93.6)	-0.80175	(96.6)	-0.22413	(99.3)	-1.09289	(97.3)
₆₆ Dy	$6s^24f^{10}$	-0.18385	(93.4)	-0.84813	(96.5)	-0.22194	(99.2)	-1.16092	(97.6)
₆₇ Ho	$6s^24f^{11}$	-0.18388	(93.1)	-0.90059	(96.5)	-0.22259	(99.2)	-1.23536	(97.8)
68Er	$6s^24f^{12}$	-0.18664	(92.8)	-0.95811	(96.5)	-0.22616	(99.2)	-1.31568	(98.0)
₆₉ Tm	$6s^24f^{13}$	-0.18849	(92.6)	-1.01386	(96.5)	-0.22893	(99.2)	-1.39258	(98.0)
₇₀ Yb	$6s^2 4f^{14}$	-0.18406	(95.1)	-1.06576	(97.1)	-0.22452	(100.1)	-1.49957	(98.6)
₇₁ Lu	$6s^24f^{14}5d^1$	-0.18102	(81.7)	-1.02455	(100.6)	-0.25344	(98.1)	-1.47516	(102.7)

表 1. 電子相関エネルギー(hartree)

【参考文献】

[1] <u>http://setani.sci.hokudai.ac.jp/sapporo/</u>

[2] Sekiya, M.; Noro, T.; Miyoshi, E.; Osanai, Y.; Koga, T. J Comput Chem, 2006, 27, 463.

[3] Nakajima, T.; Hirao, K. J Chem Phys 2000, 113, 7786.