電子移動で生成した励起中性モノハロメタン CH₃X(X = Cl, Br, I)の解離機構

(阪府大院理) 辻中 大雅,藤原 亮正,松原 浩,早川 滋雄

【序】励起中性種の解離機構の解明は、化学反応の基礎的な情報を与えるために重要 な課題である。またモノハロメタンの解離はオゾン層の破壊とも関連し、光解離によ る研究が多く報告されている^{1,2)}。我々は今までに、ハロゲンを2原子含む CH₂X₂(X = I, Br, Cl) について、解離機構をエネルギーレベルと対応させて検討したところ、その 機構は光解離での報告³⁾ とは、明確な相違があることが分かった^{4,5)}。今回、ハロゲン を1原子含む CH₃X (X = I, Br, Cl) について電荷逆転質量分析法 (Charge inversion mass spectrometry) を用いて実験を行い、励起中性種の解離機構を検討した。CH₂X₂ (X = I, Br, Cl) の実験を含む今までの電荷逆転質量分析法では、Target として使用し たアルカリ金属のイオン化エネルギーが大きいほどピーク幅が狭くなる傾向であっ たが、今回 Na targetを用いた場合 Cs や K を用いた場合より幅が広くなるピークを 見出した。この挙動についてエネルギー準位や運動エネルギー放出 [Kinetic Energy Release (KER)] から議論する。

【実験】本研究では、当研究室で開発した電荷逆転質量分析法⁶を用いた。本装置は、 Target にアルカリ金属 (Cs, K, Na) を用いることによりプレカーサーイオンが Target と 2 回衝突連続 1 電子移動を起こし負イオンを生成することで、励起中性種の解離が 観測できる。特に中性化

が近共鳴で起こるため 特定の内部エネルギー を持つ励起中性種から の解離情報を得ること ができる。CH₃X (X = I, Br, Cl) を 70 eV の電子 イオン化法によりイオ ン化した CH₃X⁺ につい て、アルカリ金属ターゲ ットを用いて電荷逆転 スペクトルを測定した。 CH₃I は市販品を用い、 CH₃Br はCH₃OH と HBr、 CH₃Cl は CH₃OH と PCl₅ からそれぞれ合成した。

Fig.1. Charge inversion spectra of CH_3X^+ (X = I, Br, Cl) measured using alkali metal targets : (a) CH_3I , Cs ; (b) CH_3I , K ; (c) CH_3I , Na ; (d) $CH_3^{81}Br$, Cs ; (e) $CH_3^{81}Br$, K ; (f) $CH_3^{81}Br$, Na ; (g) $CH_3^{37}Cl$, Cs ; (h) $CH_3^{37}Cl$, K ; (i) $CH_3^{37}Cl$, Na.

【結果と考察】 Fig.1(a)-(i) に入射 イオンを CH_3X^+ (X = I, Br, Cl) とした Charge inversion ス ペクトルを示す。こ れらの図に示され るように、ハロゲン 脱離で生成する X^- とH脱離で生成する CH_2X^- が主フラグ メントとして観測 され、わずかに

Fig.2. Heats of formation of the neutral and cationic forms of (a) CH_3I , (b) CH_3Br and (c) CH_3Cl in eV. The thermochemical values are taken from Ref.7. The energy levels predicted by near-resonant neutralization with alkali metal targets are shown as dashed.

CHX⁻, CX⁻も観測される。H 脱離の相対強度は I<Br<Cl の順に、Target では Na <K<Cs の順に大きくなる。Fig.2 に、CH₃X (X = I, Br, Cl) の中性種、イオン、フラ グメント、および近共鳴で生成する励起中性種のエンタルピーを示す。H 脱離の相対 強度の順は Fig.2 における励起中性種 CH₃X* と CH₂X+H とのエネルギー差 [Available Energy (AE)] の順と一致し、CH₃X* における H 脱離過程はAEの大きい解 離が優先して起こることを示している。

Na target における X⁻のピーク形状は、台形ピークの上に三角形のピークが乗った形をしている。質量スペクトルにおいて台形のような幅の広いピークが観測されるのは、質量中心系で球状に大きな運動エネルギー放出 (KER) が起こっていることを示している。Fig.1 (c), (f), (i) で、Na target における X⁻の三角形部分に対応する KER 値は I⁻= 0.038 eV, Br⁻= 0.063 eV, Cl⁻= 0.085 eVとなる。Fig.2より、CH₃+X に解離するAE値は X = I: 1.94 eV, X = Br : 2.34 eV, X = Cl : 2.57 eV となり、KER/AE値が X = I: 2.0%, X = Br : 2.7%, X = Cl : 3.3%と非常に小さいことから、AE の一部が CH₃の内部エネルギーに緩和されてから解離が起こっていると考えられる。これに対し、X⁻の台形部分に対応する KER値は I⁻= 2.02 eV, Br⁻= 2.49 eV, Cl⁻= 2.58 eVであり、KER/AE値がほぼ同じ値であることから、Na target での励起中性種のポテンシャルエネルギーは、反発ポテンシャルと交差できる位置にあり、台形のピークは CH₃ がほとんど内部エネルギーをもたない反発ポテンシャルからの解離であると考えられる。

参考文献

- 1) D.Townsend, S.K.Lee, A.G.Suits, J.Phys.Chem. A, 108, 8106-8114 (2004).
- 2) A.Alekseyev, H.Liebermann, R.Buenker, J.Chem. Phys., 126, 234102-234112 (2007).
- 3) P.Sharma, R.K.Vatsa, D.K.Maity, S.K.Kulshreshtha, Chem. Phys. Lett., 382, 637-643 (2003).
- 4) T.Sasaki, S.Hayakawa, H.Matsubara, J.Mass Spectrom., 43, 1679-1685 (2008).
- 5) S.Hayakawa, T.Sasaki, H.Matsubara, Chem. Phys. Lett., 463, 60-64 (2008).
- 6) S.Hayakawa, J.Mass Spectrom., 39, 111-135 (2004).

⁷⁾ S.G.Lias. et al., J. Phys. Chem. Ref. Date, 17 (Suppl.1), 1-861 (1988).