4C12

ハロメタンー水錯体のマトリックス単離赤外分光

(産総研) 〇伊藤文之

「序】

ハロメタンと水の相互作用は、弱い水素結合を調べる上でも大気科学的見地からも重要と考えられる。我々は先に行った¹⁾CHF₂Cl-H₂O 錯体に関する実験および計算化学的研究を、他のハロメタンについても拡張し、構造・スペクトルの系統的変化について検討したので、その結果について報告する。

【実験と計算】

ハロメタンとしてヨウ化メチル CH₃I、クロロホルム CHCl₃を選択した。それぞれ水・ Ar と混合気体を調製して冷却 CsI 基板上に吹き付けることでハロメタンー水錯体を 生成させ、スペクトルの観測を行った。スペクトル帰属のため、量子化学計算(MP2 レベル)および密度汎関数法(B3LYP、B971)による構造最適化・振動計算を行った 【結果と議論】

安定異性体の構造について

図1にCH₃I/H₂O/Ar系のスペクトルの −部を示す。H₂O 濃度増加に伴い成長 したピークを CH₃I-H₂O と帰属した。 ⇒ 計算で得られた構造はいずれの計算レ ² ベルでも図2に示したもので、CHF₂Cl ¹ や CH₃F の水錯体 ²⁾と同様である。 ⁰ B3LYPでの分子間距離(表1)を見る と、CH₃F が proton acceptor、CHF₂Cl が proton donor となっており、CH₃I は donor/ acceptor 両者を兼ねていること がわかる。これは炭素原子に結合しているハ ロゲンの電子吸引性による違いと考えられ

表 1 原子間距離(Å) が van der Waals 半径の 和より短いものに*をつけて示す。

	R(XH)	R(HO)			
CH ₃ F	2.00*	2.87			
CHF ₂ Cl	4.37	2.20*			
CH ₃ I	3.03*	2.45*			

図 3 DFT 法(左図) および MP2 計算(右図) による CHCl₃-H₂O 錯体の最安定異性体の構造

一方、CHCl₃-H₂O については、計算法により安定異性体の構造が異なることがわかった(図 3)。いずれの場合も、CHCl₃がproton donorであることを示している。実際に観測されたCHCl₃/H₂O/Ar系のスペクトル(図 4)は、DFT法の振動スペクトル予測とよく対

法の振動スペクトル予測とよく対応する。

水素結合性について

これらのハロメタン-水錯体の C-H 伸縮振動に注目すると、 CHCl₃-H₂O のみレッドシフト (-14cm⁻¹)を示した。DFT 法の計 算結果ではこの振動モードが水和 により 60 倍程度強くなると予想さ れた。これらの結果から、今回観測 したハロメタン-水錯体のうち、

CHCl₃-H₂O のみが"通常の"水素結合で bound し、他のものは anti-hydrogen bonding をしていると考えられる。ハロメタンにより、このような違いが出るのは興味深い。 また、CHCl₃-フルオロベンゼン錯体は anti-hydrogen bonding で bound しているとされる ³⁾ことから、CHCl₃の 1:1 錯体において水素結合の系統的変化を見ることができる と期待され、今後検討する予定である。

【参考】

- 1) 日本化学会第 89 春季年会、3E403(2009); Chem. Phys. 369, 82 (2010).
- 2) Chem. Phys. Lett. 357, 209 (2002).
- 3) Chem. Phys. Lett. 299, 180 (1999).

4C13

フェニレンシリカメソ多孔体における架橋有機基の励起拡散とトラップ過程 (豊田中研¹, JST/CREST², 豊田理研³) 〇山中健一^{1,2}, 岡田正³,

後藤康友^{1,2}, 谷孝夫^{1,2}, 稲垣伸二^{1,2}

【序】架橋有機シランと界面活性剤の自己組織化により得られるメソポーラス有機シリカ (PMO)は有機無機ハイブリッド骨格と規則的な細孔構造を持つメソポーラス物質であり, メソ多孔体を形成する壁面骨格そのものが共有結合した有機シリカユニット(≡Si-R-SiO ≡)から構成されることを特徴とする(図1)[1].近年,光機能材料への応用研究が盛んに行 われており[2],骨格中に高密度に充填された有機基の光励起緩和過程を把握することは重要 である.そこで,最も基本的な芳香族有機基であるフェニレン(Ph)基を骨格に導入したPMO の発光スペクトル及びその時間変化を測定し,架橋Ph基の光励起緩和過程を検討した.

【実験】Ph-PMO は粒径サブミクロン,細孔径約 3.8 nm のハニカム状の一次粒子からなる粉 末である (図1). 骨格中で Ph 基とシリケート層はチャンネル (図1左:奥行き) 方向に 7.6Å

の周期で交互積層している(図1右). 一方, Ph 基の円周方向の周期性は X 線回折では観測されないが,構造モ デルから Ph 基間距離は約 4.4Å と推 定されている[1]. この Ph-PMO 粉末 をメタノール:エタノール=1:1 の混合溶媒に分散させ,発光及びそ の時間変化の測定を行った.蛍光寿 命の測定は266 nmのフェムト秒パル スを励起光源とし,時間相関単一光 子計数法により行った.

図1. Ph-PMOの模式図

【結果と考察】図2に前駆体分子(1,4-bis(triethoxysilyl)benzene:BTEB)の希薄溶液とPh-PMOの吸収スペクトルに対応する励起スペクトルを示す.縮合反応によりフェニル基間の相互作用が生じ、長波長側に数nmシフトすることが判る.図3にPh-PMOの分散溶液の蛍光スペクトルの温度変化を示す.低温における発光スペクトルはBTEB 希薄溶液のそれと比較してシフトしており[3],吸収のシフトと併せて考えると、励起状態はいくつかのPh 基に広がったエキシトン状態からの発光と考えられる(以下では便宜上モノマー状態と呼ぶ).一方、温度を上げていくにつれてモノマー蛍光が減少し,305 nm および 350 nm の発光帯が観測された. 前者(305 nm)は有機基を含まないメソポーラスシリカである FSM においても観測されることから[4],シリカ中の欠陥(カラーセンター)に由来する発光と考えられる.後者(350 nm)は隣接するPh 基同士が相互作用して形成したエキシマー由来の発光と帰属した.また、励起スペクトルの形状は全ての蛍光波長において一致した.従って、欠陥からの発光およびエキシマー状態はモノマー状態から生成していると考えられる.

図4にモノマー蛍光(290 nm,図3 灰)およびエキシマー蛍光(360 nm,図3 黒)の時間

依存性を示す(室温). モノマー蛍光は指数関数で表すことができず,時間と共に反応速度を 変えながら減衰していると考えられる. エキシマー発光には立ち上がりが観測され,その後 は単一の時定数で減衰した. 以上の結果は,モノマー蛍光(M*)が時間に依存する速度定数 *k(t)*で減衰し,それに伴って一種類のエキシマー状態

(E*)が生成していることを示している.このよう な反応は以下の式で表される.

 $dM^*/dt = -\tau_M^{-1}M^* - [Q]k(t)M^*$ (1)

 $dE^*/dt = -\tau_E^{-1}E^* + [Q]k(t)M^*$ (2)

ここで, [Q]はトラップ濃度, τ_M , τ_E はそれぞれ, モ ノマーおよびエキシマーの蛍光寿命である.この解 は一般に,

 $M^{*}(t) = \exp\{\tau_{\rm F}^{-1}t + [Q]\int_{0}^{t}k(t')dt'\}$ $E^{*}(t) = \exp(-\tau_{\rm E}^{-1}t)$ (3)

 $\times \int_0^t \exp(\tau_{\rm E}^{-1}t') \mathbf{M}^*(t') [\mathbf{Q}] \mathbf{k}(t') \mathrm{d}t' \tag{4}$

と表される. そこで, これらの結果を2つの極限モ デル:(i)静止したモノマー状態からカラーセンター へのエネルギー移動とエキシマー形成が競合する モデル, (ii) モノマー状態は Ph 基が近接して配列す る円周方向へ一次元拡散してカラーセンターある いはエキシマーサイトにトラップされるモデルで 解析した.(i)のモデルではエキシマー蛍光の立ち上 がりが再現できなかったが、(ii)のモデルでは立ち上 がりが実験結果をほぼ再現した(図4). Dlott らに よると、励起状態が一次元でマイグレーションして いると仮定した場合の速度定数は $k(t) = At^{-1/2}$ と表さ れる[5]. 290 nm の減衰曲線と(3)式からパラメータ を求め、(4)式に代入して 360 nm 発光のモデル関数 を得た.このことは、Ph-PMO 中で Ph 基モノマーの 励起状態が隣接する Ph 基間でマイグレートし、カ ラーセンターあるいはエキシマー形成がそのトラ ップとなっていることを示唆している.当日はモデ ルの詳細を報告し、議論する.

- [1] S. Inagaki et al., Nature, 2002, 416, 304.
- [2] (a)S. Inagaki et al., *Angew. Chem. Int. Ed.*, 2009, *48*, 4042.
 (b)M. Ohashi et al., *Chem. Eur. J.*, 2009, *15*, 13041.
- [3] Y. Goto et al., Chem. Mater., 2008, 20, 4495.
- [4] T. Okada et al., Polish J. Chem., 2008, 82, 729.
- [5] D.D. Dlott et al., J. Chem. Phys., 1978, 69, 2752.

図2. Ph-PMO および BTEB の励 起スペクトル (室温).

図 3. Ph-PMO の蛍光スペクトル の温度依存性

図4. Ph-PMO の発光強度の時間 変化. モデル(ii)で解析した結果で あり, 灰色は 290 nm, 黒は 360 nm である. 横軸は ch であり, 1 ch = 12.2 ps に相当する。

4C14 有機シリカ材料中有機基が形成するエキシマーの構造および物性の理論的予測

(豊田中研¹, JST-CREST²) ○白井聡一^{1,2}, 谷孝夫^{1,2}, 旭良司¹, 稲垣伸二^{1,2} shirai[at]mosk.tytlabs.co.jp (送信時は[at]を@に変更)

【緒言】有機シリカメソ多孔体(Periodic mesoporous organosilica, PMO)[1,2]は、規則正しい細孔構造と有 機基が均一かつ密に導入された細孔壁を有する材料である(Fig. 1)。特に、電子的に相互作用した架橋有 機基が特異な物性(ホール輸送性[3],電子供与性の向上[4]など)を示す例が見出され、新規の光機能性材 料として注目されつつある。我々は、架橋有機基間の相互作用を詳細に解明し、機能の向上・創出につな げたいと考えている。その一環として、光励起による架橋有機基のエキシマー形成に着目している。架 橋有機基はシリカ骨格に共有結合して運動が制限されているため、そのエキシマーでは自由に動ける環境 下とは異なる構造をとっている可能性がある。そこで、量子化学計算を用い、細孔壁中のエキシマーの 構造・物性を理論的に解析している。まず有機分子二量体[5]、次いでシリカ骨格に架橋した有機基のモ デル[6]を用いて計算を行い、シリカ骨格部位が大幅に変形せずとも、有機基自体の構造変化によって有 機基同士が接近しうることを示した。これらの計算では、自由に動ける環境下のエキシマーと同様の、 有機基分子面のずれがない積層構造を仮定した。一方、実際の架橋有機基は、分子面のずれを伴うより 複雑な積層構造をとると考えられている[2]。また非晶質(アモルファス)の細孔壁では、有機基が規則的 に配列しておらず、多様な相対位置・配向をとりうる。そこで本研究では、様々な積層構造(分子面間距 離・ずれ)の架橋有機基(ベンゼン)モデルについて、励起状態の構造最適化計算を用いてエキシマーの形成 をシミュレーションし、その構造・物性を解析したので報告する。

【計算の詳細】シリカ骨格に共有結合したベンゼン を $H_3Si-C_6H_4-SiH_3$ としてモデル化し、2 つの H₃Si-C₆H₄-SiH₃を平行に重ね、細孔壁中で積層した ベンゼンを表現した(Fig. 2)。分子長軸方向のずれ幅 を水平距離 D_x、分子面垂直方向の距離を垂直距離 D_vとした。従来より提案されている構造モデル[2] では、D_x が約 1.2Å、分子間 Si-Si 距離 r(Si-Si)が約 4.4Å である。そこで、これらを含む距離範囲 D_x=0.0 ~1.5Å、D_v=4.0~5.0Åの各点について時間依存密度 汎関数法TD-DFTによる励起状態S1の構造最適化を 行った。その際、外側 Si 原子の x, y 座標および内側 Si 原子の y 座標を固定して D_x , D_v を一定とし、シリ カ骨格による分子運動の制限を模擬的に取り入れた。 TD-DFT の交換相関汎関数として B3LYP を用い、基 底関数系として 6-31G(d)を用いた。全ての計算に量 子化学計算プログラムパッケージ GAMESS [7]を使 用した。

Fig.1 ベンゼン架橋 PMO の TEM 像および 構造モデル

Fig.2 計算に用いたモデルの構造とパラメータ

【結果および考察】結果の一例として、D_v=4.2Åの 条件において得られた構造を Fig. 3 に示す。 Si-C₆H₄-Si 部位がたわむことにより、ベンゼン同士 が接近している。分子面間距離 r(Ph-Ph)はいずれも 約 3.2Å となり、基底状態における r(Ph-Ph)(3.6~ 4.0Å[8])より顕著に短く、エキシマーの形成を示唆し ている。ただし、D_x>0.0Å では、自由に動ける環境 下と異なり、初期構造における分子面ずれを維持し たまま接近した構造となった。Si 原子位置が制限さ れた条件下では、分子面の水平移動や傾きは Si-C 結 合の伸縮を伴う。その不安定化が圧倒的に大きいた め、ずれが維持されたと考えられる。各D_vにおける 水平距離 D_xに対する励起状態 S₁のポテンシャルエ ネルギーカーブを Fig.4 に示す。いずれも D_xの増加 によりエネルギーが上昇し、エキシマーが不安定化 することを示している。エキシマーの引力的相互作 用の主要な因子である励起子共鳴および電荷共鳴が、 ともに D_xの増加により減少するためと考えられる。 一方、主な相互作用が分散力である基底状態 So は電 子間反発の緩和により安定化する。そのため、So-S1 遷移エネルギーは、D_xの増加に伴って増大する(Fig. 5)。ただし、ほとんどの条件においてモノマーの S0-S1 遷移エネルギー4.85eV(同レベル方法による計 算値)より低い値となった。以上の計算結果より、架 橋有機基が分子面ずれを伴う積層構造をとった場合 でも、励起後に有機基同士が接近してエキシマーを 形成することが示された。また、その際の蛍光はモ ノマーより長波長と予測され、ベンゼン架橋 PMO(Fig. 1)から得られる蛍光スペクトルの挙動(エ キシマー蛍光が支配的)と定性的に整合した。

Fig.3 D_y=4.2Å での最適化構造, *r*(Si-Si)および *r*(Ph-Ph) (a) D_x=0.0Å (b) D_x=0.4Å (c) D_x=0.8Å (d) D_x=1.2 Å

Fig.5 D_xに対する S₀-S₁遷移エネルギーの変化

- [7] Schmidt, N.W. et al. J. Comp. Chem. 1993, 14, 1347.
- [8] Sinnocrot, M. O.; Sherill, C. D. J. Phys. Chem. A 2004, 108, 10200.

^[1] Inagaki, S. et al. J. Am. Chem. Soc. 1999, 121, 9611. [2] Inagaki, S. et al. Nature 2002, 416, 304.

^[3] Mizoshita, N. et al. J. Am. Chem. Soc. 2009, 131, 14225. [4] B. Camarota, et al. J. Phys. Chem. C. 2009, 113, 20396.

^[5] 白井ら, 分子科学討論会 2008 福岡 3E03. [6] 白井ら, 分子科学討論会 2009 名古屋 2E17.

蒸着分子性ガラスの生成と緩和における化合物依存性 ―局所安定構造との関係―

(学習院大理) 〇仲山英之・森山遼・横山祐樹・石井菊次郎

【はじめに】私たちは、低温の金属基板に 蒸着し作成した分子性ガラスの性質につ いて調べている.これまでにアルキルベン ゼン系化合物(表1,(1)~(4))を試料とし て調べた結果、蒸着ガラスの密度や緩和過 程が蒸着温度 Ta に顕著に依存すること、 また、低温で作成したガラスから生じた過 冷却液体が液体-液体間の緩和現象を示す 場合があることがわかった [1,2].

このような蒸着ガラスの特徴は以下の ように考えると理解できる. Ta が低い場 合,分子運動が急激に凍結するので分子配 置に関して無秩序性の高いガラスが生じ る. 一方, Ta が高い場合,分子は凍結す る前に局所安定構造を探すことが可能と なり,局所安定構造の濃度が高いガラスが 生じる. 過冷却状態で観測される液体-液 体緩和は,低温で生成した無秩序性の高い ガラスの構造がガラス転移後の過冷却液 体でもしばらく保持されることと,局所安 定構造の濃度が高い液体がより安定な過 冷却液体である場合に起こると考えられ る.

このような仮説の妥当性を検討する目的 で,これまで用いてきた化合物と分子間相 互作用の点に違いが期待され,過冷却液体

図1. EB (Ref. 3) および ECH (Ref. 4) の T_g 近傍の過冷却液体における α 緩和時間の 温度依存性. ただし, 測定データを Vogel-Fulcher-Tammann 式で近似したもの.

の性質が異なる試料としてエチルシクロヘ キサン(ECH)を選んだ.図1は、 T_g 近傍の 過冷却液体状態における α 緩和時間の温度 依存性をエチルベンゼン(EB)と比較したも のである.ECH は EB に比較して緩和時間 の変化が緩やかである.この温度依存性の 急峻度は fragility index m と呼ばれる量

$$m = \left[\frac{d\left(\log\tau\right)}{d\left(T_g/T\right)}\right]_{T=T}$$

で比較でき, ECH は TL や EB より m が

化合物	<i>T_g</i> /K (78K蒸着試料)	液・液緩和 の有無	Fragility index <i>m</i>	2 量体の安定化エネ ルギー / kJmol ⁻¹
(1) Toluene (TL)	116.3	無	105 [5]	-11.8
(2) Ethylbenzene (EB)	116.2	有	110 [3]	-9.6
(3) Propylbenzene (PB)	125.7	有		-12.8
(4) Isopropylbenzene (IPB)	129.4	有		-11.5
(5) Ethylcyclohexane (ECH)	104.3	無	56.5 [4]	-7.5

表 1. 扱った化合物といくつかの性質

図2. 分子軌道計算による2量体の安定構造

小さい(表 1). このことは, ECH は TL や EB に比べてガラスになりやすいことを 示している. このような性質を持つ ECH を試料として,密度と緩和過程を調べ,他 の化合物の結果と比較した. 試料の作成と 測定に関しての詳細は,関連する発表 4P038で示す. また,量子化学計算による 局所安定構造の探索を行った.

【結果と考察】 ECH の蒸着ガラスもアル キルベンゼン系と同様に, Ta が低いほど低 密度であり, Ta が Tg に近づくほど高密度 のガラスができた.しかし, アルキルベン ゼン系で見られたような,同じ温度の過冷 却液体よりも高密度のガラスは生じなかっ た.また,蒸着後昇温した場合, アルキル ベンゼン系に比べてガラス状態で構造緩和 を示す温度領域が広いことがわかった.さ らに,ガラス転移した後の過冷却液体は明 確な液体-液体緩和現象を示さなかった.

図2に、分子軌道計算ソフト Gaussian 03 を用いて行った2量体の安定構造の例 を示す.また、2量体形成による安定化エ ネルギーの計算値を表1に示す.計算レベ ルは MP2/6-31G(d)であり、counterpoise 法で基底関数重ね合わせ誤差 (BSSE)の補 正を行った.ECH は他のものに比べ安定化 エネルギーが小さい.アルキルベンゼン系 の2量体構造の特徴は、アルキル基の水素 の1つが、もう一つの分子のフェニル基と 相互作用している点である.TL、EB および PB ではこの相互作用が2対、IPB では1 対存在する.このような、フェニル基と水 素の相互作用が ECH では存在しないがア ルキルベンゼン系では存在することが、後 者の化合物の α 緩和時間が高温から T_g に 近づくにつれて急激に増加することと関係 し、また、液体–液体緩和が見られることと も関係していると考えられる.

2量体の安定構造に関する計算は、局所 安定構造の情報として重要であるが、詳細 な考察をする際には注意が必要である.通 常,Tg近傍の過冷却液体では大きなクラス ター構造が生成していると考えられている. したがって、2量体構造の情報だけでは不 十分である.また, m を用いて液体-液体 緩和を考察する際,報告されている m は液 体-液体緩和した後の通常の過冷却液体の ものであり、緩和前の不安定な液体のもの ではない点にも注意が必要である. これら のことを考慮すると、TL が m と2 量体の 安定化エネルギーに関して EB と同程度で あるが液体-液体緩和を示さないことは, TL が無秩序性の高い過冷却液体状態を長 時間維持できないことを示唆している.

[1] K. Ishii et al. Bull. Chem. Soc. Jpn., 82 (2009) 1240.

[2] K. Ishii et al. Chem. Lett., accepted.

[3] A. Angell, Private communication.

[4] A. Mandanici et al. J. Chem. Phys., **128** (2008) 124505.

[5] A. Döß et al., J. Chem. Phys., 107 (1997) 1740.

一次元ナノチャンネルに吸着された水分子の水素結合 ネットワーク形成とプロトンダイナミクス

(東洋大・理工¹, 阪大院・理², 阪大・博物館³, 日大・文理⁴, 東京電機大・工⁵) 。上田貴洋¹, 中西 亭², 小林広和⁴, 宮久保圭祐^{2,3}, 石丸臣一⁵, 江口太郎^{2,3}

【序】ナノメートルオーダーの広が りをもつ疎水性微小空間に閉じ込め られた水分子は、水素結合が細孔壁 面により空間的に制約を受けるため、 バルクとは異なった水素結合ネット ワークを形成する。そのため、微小 空間において水分子集団が協同的に 示す物性は、空間の大きさと形状に 大きく影響され、バルクとは異なる 特異な物性を呈する。特に、1次元空 間をテンプレートとした場合、そこ に閉じ込められた水分子集団はきわ めて大きな構造的異方性を示す。カ

Fig. 1 1次元ナノチャンネルを有する化合物 1(a) および 2(b)の結晶構造と吸着水がつくる 1次元 鎖状構造とカラム構造

ーボンナノチューブに代表される疎水的で均一な1次元ナノチャンネルに閉じ込められた水 分子は、空間の異方性を反映したカラム構造を形成することが知られている [1]。また、疎 水性置換基を配位子にもついくつかの金属錯体は、カラム構造を形成した水分子を結晶水 として取り込むことが報告されている[2,3]。このようなカラム構造をもつ水分子集団は、 water nano-columnと呼ばれ、1次元的な水素結合ネットワークがその物性に大きく関与す る。特にwater nano-columnにおけるプロトンの輸送現象は、生体内のプロトンポンプ機能 で利用される生体膜のイオンチャンネルにおけるプロトン移動のモデルとしても重要である。 これまで、water nano-columnの挙動については、NMR、誘電率測定、X線構造解析、 MD法などによる研究が行われている。しかしながら、水分子集団の協同的な現象として プロトンの移動を観測するには、巨視的性質である電気的な応答を調べるのが有効である。

我々は、これまで1次元チャンネルを有する2種類の結晶tris(*o*phenylenedioxy) cyclotriphosphazene (1)とtris(ethylenediamine) cobalt(III) chloride (2)において、プロトン伝導度をはじめとする水分子の動的性質を調べてきた[4]。Fig 1にこれらの結晶構造と水分子の構造を示す。いずれの結晶も0.5 nm前後の1次元ナノチャンネルを有し、1では

水分子の1次元鎖状構造を、2ではカラム構造を形成する。いずれの物質も比較的大きな単結晶試料が得られるため、プロトン伝導度の評価を容易に行える利点がある。本講演では、 これまでに得られたプロトン伝導度の異方性や吸水量(相対湿度)依存性に対して、パーコ レーション理論による解析を行い、水素結合の形成とプロトン伝導性との関係について微視 的観点から考察したので報告する。

【実験】1および2の粉末および単結晶試料について、温度と相対湿度を制御した環境 下においてLCRメーター(HIOKI 3532-80型ケミカルインピーダンスメーター)を用 い、擬似4端子法を用いた交流法によって電気伝導率を測定した。

【結果および考察】Fig. 2は、単結晶のc軸に平行な電気伝導率を相対湿度100%に外 挿した値に対する比伝導率として、その相対湿度依存性を示した図である。いずれの 試料についても、伝導率が相対湿度に対してほぼ指数関数的に増加する。また、c軸 に垂直な方向では、有限の電気伝導率は測定できなかった。これから、電気伝導を担 うキャリアーは吸着水に由来するプロトンであると考えられる。そこで、水素結合に 欠陥のない水素結合鎖が出現する確率をパーコレーション理論によって見積もった ところ、細孔への占有率(*θ*) に対し出現確率は指数関数的に増加することがわかっ

た。これから、伝導率は欠陥のな い水素結合鎖を形成するチャンネ ルが担っており、その伝導機構と してGrötthuss proton hopping機 構が支配的であると結論できる。 一方、占有率の小さな領域ではパ ーコレーション理論で予想される 値より大きくなっている。これは、 比較的低い伝導率に対して、より 遅い過程、つまり、水素結合に欠 陥を有し、プロトンの移動に水分 子の拡散や水素結合の組み換えが 関わるチャンネルも伝導率に寄与 するようになると考えられる。

Fig.2 相対湿度100%での外挿値に対する比伝導率の相対湿度依存性。図中の実線は、水素結合に欠陥のないチャンネルが出現する確率の水分子による細孔占有率依存性である。

References

Y.Maniwa *et al., Chem. Phys. Lett.*, **401**, 534-538 (2005).
 S.Takamizawa *et al., Angew. Chem. Int. Ed.*, **47**, 1689-1692 (2008).

[3] M. Tadokoro et al., Chem. Commun., 1274-1276 (2006).

[4]中西,上田ら,第3回分子科学討論会(4P043)、第2回分子科学討論会(3P007)