4P103

水和ポリペプチドの構造安定性に関する分子軌道法計算

(AIST*, 京大院薬**) ○永田武史*、Dmitri G. Fedorov*, 北浦和夫**

[序] 我々は、分子軌道法レベルでたんぱく質などの巨大分子系の計算を実現してきた Fragment Molecular Orbital (FMO)法[1]と溶媒の分極効果をあらわに考慮する Effective Fragment Potential(EFP)法[2]を混成した FMO/EFP 法[3]を開発した。EFP 法は溶媒分子 を、静電(多極子展開)、分極、電子相関交換反撥&電荷移動の項からなるポテンシャ ルにより表現する分子力学的手法である。分子力学法との決定的な違いは、(i) EFP 法 は実験的パラメータを一切用いないので汎用性が高い、(ii) 分子軌道法レベルの精度 で計算ができることが挙げられる。また計算コストは FMO 計算に精々EFP による一 電子積分が追加される程度なので、分子力学計算とほとんど変わらない。本研究では FMO/EFP 法を水和グリシン四量体(tetraglycine)に適用することで、水和 tetraglycine の 双性イオンの、中性に対する安定性を議論する。最近の glycine の安定性に関する研 究としては、Aiken 等[4]が EFP 法と PCM 法を用い、グリシン単量体における双性イ オンの相対安定性には PCM 法によるバルクの水の効果が重要であると結論付けた。 しかしながら、水和ポリペプチドの場合は、安定性に関してまだ報告が少ない。

[議論] 本研究では tetraglycine に EFP の水分子の層を追加していくこ とで、溶媒効果を議論する。右図に は延伸した neutral と zwitterion 状態 の tetraglycine の初期構造が描かれ ている。tetraglycine は FMO 計算の ために 3 フラグメントに分割され、 chemical modeling software VEGA [5] により、溶質から 2.5, 3.0, 3.5, 4.0, 4.5Å の水の層を置いた。(a)まず、これら

の分子を FMO/EFP-RHF/cc-pVDZ で構	毒造最適化し、 >	水和 ziwitter	ion \mathcal{O} neutral	に対する
相対エネルギー $\Delta E = E^{\text{zwit}} - E^{\text{neu}}$ を計	算した。ここ	$\mathfrak{C} E^{zwit} \succeq E$	^{neu} は水和 zw	vitterion と
neutral の全エネルギーである。得ら	water layer	ΔE (a)	ΔE (b)	$\Delta E(\mathbf{c})$
れたΔ <i>E</i> (a)は右表に表示されてい	2.5 Å	22.38		
る(kJ/mol)。VEGA による構造を最	3.0 Å	79.14	79.11	
適化したものでは水の層を厚くし	3.5 Å	3.59	31.73	-3.86
ても、常に neutral のほうが安定とな	4.0 Å	40.67	-66.51	-58.77
ることが分かった。(b) 次に、ステ	1 5 Å	20.77	10.67	7 24
ッフ(a)で得られた最適化構造を初	4.3 A	29.11	10.07	7.34

期構造とし、20,000 K、1,000 ステップの Monte Carlo(MC)計算を行った。第三コラム

には得られた相対エネルギーが並んでいるが、4.0 Å 水層の zwitterion のみが相対安定 性を示した。(c) MC 計算により得られた構造を初期構造として、25,000 K、1,000 ス テップの Monte Carlo 計算を実行した。結果は第四コラムにある。(b)における計算と の差は 3.5Å 水層の tetraglycine における相対安定性はほぼゼロとなったことがあげら れる。しかし、それ以外は相対エネルギーにそれほどの変化は見られなかった。

第三コラムにおける相対エネルギーを詳細に議論するために、相対エネルギーの寄与 (kJ/mol)を計算した。右下の表によると、溶質による寄与は層の増減にかかわらず常 に neutral のほうが安定である。これは zwitterion のほうがイオンや水による溶質の分 極により、より歪んでいるからだと考えられる。一方、溶媒の寄与と溶質-溶媒の相

互作用による寄与は相関してい て、前者の寄与が大きな正の値の 場合、後者の寄与がより大きな負 の値となる。これは、neutralと比 べて、zwitterionのほうが周りの 水をより強く分極するので、分極 のために消費されるエネルギー が溶媒間の結合を弱めるのに直

接寄与するからである。

FMO-RHF/EFP relative energy contributions of (b)

water layer	solute	solvent so	Total	
3.0 Å	337.08	120.43	-378.40	79.11
3.5 Å	335.66	223.93	-527.86	31.73
4.0 Å	384.45	346.61	-797.56	-66.51
4.5 Å	379.38	287.81	-656.52	10.67

次に、安定化に重要な寄与をする溶質-溶媒相互作用の内訳を計算した。この結果、 相対エネルギーの寄与に関する表の考察通り zwitterion ではイオン基で強い相互作用 を示し、neutral における水分子は弱いながらも 3.5 Å の水の層で既に満遍なく両端や ペプチド結合の CO, NH と相互作用している。しかし、溶媒間の相互作用のために、 水の層が厚くなるに従って溶質-溶媒間の相互作用が弱くなる。一方 zwitterion は溶 質-溶媒間の相互作用が水層の増加とともに強くなっている。しかし、4.5 Å では、 溶媒間の相互作用が大きくなるために、特にイオン末端と結合している水の静電、分 極相互作用が弱くなっている。結局、4.0 Å で水の層が飽和し、4.5 Å で外側にもう一 層水が形成されるために、zwitterion における相対的な安定性が損なわれている。溶 質-溶媒相互作用解析の詳細については当日発表する。

REFERENCES

[1]. D. G. Fedorov, K. Kitaura, J. Phys. Chem. A, 111, 6904 (2007).

[2]. P. N. Day, J. H. Jensen, M. S. Gordon, S. P. Webb, W. J. Stevens, M. Krauss, D. Garmer,H. Basch, D. Cohen, J. Chem. Phys., 105, 1968 (1996).

- [3]. T. Nagata, D. G. Fedorov, K. Kitaura, M. S. Gordon, J. Chem. Phys., 131, 024101 (2009).
- [4]. C. M. Aikens and M. S. Gordon, J. Am. Chem. Soc. 128 (39), 12835 (2006).
- [5]. A. Pedretti, L. Villa, and G. Vistoli, J. Mol. Graph. Mod. 21 (2002).