4P053

## インドールニトロニルニトロキシドの固体磁気特性に及ぼす 6位ハロゲン導入効果

(慶應大理工) 〇村岡 喬梓、須藤 信浩、吉岡 直樹

## 「序】

当研究室では水素結合などの分子間力を活用し て分子磁性体の構築を目指している。インドール ニトロニルニトロキシド(1)を基本骨格とした化 合物では、分岐型水素結合により積層カラム構造 を形成し、SOMO-SOMO 接近の結果1次元強磁性 鎖的な挙動を示す[1]。さらに、1 ではインドール 環にもスピン密度が分布しているため、隣接カラ ムのスピン中心と最も接近している複素環の6位 に化学修飾することで積層カラム間の磁気カップ リングが強まることが期待される(Fig. 1)。本研究 ではハロゲンとニトロキシド酸素間の引力的な相 互作用に着目し[2]、複素環 6 位にハロゲンを導入 した誘導体の構造・磁性相関について検討している。 6位に塩素、臭素を導入した類縁体2,3においても 積層カラム内で強い磁気カップリングが存在し、 さらに2K付近でメタ磁性的な挙動を観測した[3]。 今回は、複素環6位にヨウ素を導入した4につい て低温での磁気挙動を各種測定法を用いて、2,3 と比較検討し、インドール環 6 位へのハロゲン導 入が結晶構造および磁気特性に及ぼす効果を議論 した。

【結果と考察】

X線構造解析より2,3と同様に4は1と同形結 晶を与え(Table 1)、一次元積層カラム構造を形成し ていた(Fig. 2)。カラム内ではニトロニルニトロキ シド部位の炭素-酸素間が3.19Åで、カラム間では ヨウ素-ニトロキシド酸素間が3.23Åで接近してい た (Fig. 3)。

**4**の磁化率測定の結果(Fig. 4)、Curie-Weiss 則を 適用するとθ = +11.1 K と正の値となり、分子間に



1:X = H, 2:X = Cl, 3:X = Br, 4:X = I





Fig. 1 Pield columnar assemblies.

Table 1 Crystallograhic parameters of 2-4.

|                             | 2                                   | 3                                   | 4                                  |
|-----------------------------|-------------------------------------|-------------------------------------|------------------------------------|
| Formula                     | $\mathrm{C_{15}H_{18}ClN_{3}O_{2}}$ | $\mathrm{C_{15}H_{18}BrN_{3}O_{2}}$ | $\mathrm{C_{15}H_{18}IN_{3}O_{2}}$ |
| М                           | 306.77                              | 351.22                              | 398.22                             |
| Crystal system              | orthorhombic                        | orthorhombic                        | orthorhombic                       |
| Space group                 | Pbca                                | Pbca                                | Pbca                               |
| <i>a</i> , / Å              | 16.441(10)                          | 16.714(8)                           | 17.197(7)                          |
| <i>b</i> , / Å              | 21.284(7)                           | 21.451(9)                           | 21.665(6)                          |
| <i>c</i> , / Å              | 8.800(6)                            | 8.7518(6)                           | 8.666(3)                           |
| <i>V</i> , / Å <sup>3</sup> | 3079.5(20)                          | 3137.2(18)                          | 3225.7(28)                         |
| Z                           | 8                                   | 8                                   | 8                                  |
| D / g cm <sup>-3</sup>      | 1.323                               | 1.487                               | 1.638                              |
| $R$ (I > 2 $\sigma$ (I))    | 0.053                               | 0.0465                              | 0.037                              |
| $R_{\rm w}$ (all data)      | 0.162                               | 0.145                               | 0.123                              |



**Fig. 2** Crystal packing of **4** along the *c*-axis.

強い強磁性的相互作用が存在した。 $\chi_m T$ 値は 300 K で 0.378 emu·K/mol と常磁性モノラジカルにおけ る理論値とほぼ一致した。温度低下に伴い、 $\chi_m T$ 値は徐々に増大した。10 K以下では急激な増大を 見せ 2.2 Kにおいて極大値 1.66 emu·K/mol に達す るが、それ以下では $\chi_m T$ 値は急激に減少した。300~ 2.4 Kにおける $\chi_m T$ -Tプロットは、分子場を考慮し た 1 次元鎖モデルによってJ/k = +12.6 K, zT/k =+0.03 K で再現された。

FC 測定の結果(Fig. 5)、印加磁場 100 ~ 3000 Oe における測定では、磁化は温度低下とともに増大 し、2.1 K 付近で極大値を示すがそれ以下では減少 した。また、その極大値は印加磁場の増加に伴い 低温域にシフトした。一方、印加磁場が 3500 Oe 以上の測定において磁化は温度低下とともに増大 し続けた。4 で見られる外部磁場依存性はメタ磁性 体に典型的な挙動であり、4 の交流磁化率測定の結 果、 $\chi_m$ 'は 2.09 K に極大値を示し、これを  $T_N$  とし た。

Table 2 Magneto-structural correlation for 2-4.

|                          | 2           | 3           | 4           |
|--------------------------|-------------|-------------|-------------|
| T <sub>N</sub>           | 1.96        | 2.08        | 2.09        |
| $d_{\text{O-X}}(\Delta)$ | 3.22(-0.05) | 3.21(-0.16) | 3.23(-0.32) |
| <i>J/k /</i> K           | 13.2        | 12.5        | 12.6        |
| <i>zJ'/k</i> / K         | 0.56        | 0.42        | 0.03        |

 $\Delta =$  Sum of vdw radii – d

2,3 および4 についてその構造および磁気特性 について比較すると(Table 2)、重元素になるに従い、 転移温度  $T_N$ が上昇した。これは塩素、臭素、ヨウ 素の順にハロゲン - ニトロキシド酸素間の $\Delta$ が大 きくなり、この方向での反強磁性的な相互作用が 強まったためと推察した。

4の低温での磁気挙動の詳細、また2,3および4の相関については当日報告する。



Fig. 3 Crystal packing of 4 parallel to the *ab*-plane.



**Fig. 4** Temperature dependence for  $\chi_m T$  of **4**. The inset shows temperature dependence for  $\chi^{-1}$  of **4**. Solid line corresponds to the calculated curve.



**Fig. 5** Field-cooled magnetization for **4** with  $100Oe(\bigcirc)$ ,  $1000Oe(\bigtriangleup)$ ,  $2000Oe(\bigcirc)$ ,  $3000Oe(\spadesuit)$ ,  $3500Oe(\bigcirc)$ ,  $4000Oe(\spadesuit)$ .

[1]H. Nagashima et al, New J. Chem., 27, 805-810 (2003)
[2]P. Metrangolo, F. et al, Angew. Chem. Int. Ed., 47, 6114-6127 (2008)
[3]須藤 他, 第 19 回基礎有機化学討論会 2P072 (2008 年 10 月, 大阪)