静電型イオン蓄積リングを用いたメチレンブルーカチオンのレーザー誘起反応

○座間優, 森本大輔, 後藤基, 松本淳, 城丸春夫, 阿知波洋次, 関崎拓也,
田沼哲, 東俊行*（首都大学理工/理研*）

【序論】
静電型イオン蓄積リング(TMU E-ring)を用い、レーザー脱着イオン化(LDI)法及び、
マトリックス支援レーザー脱着イオン化(MALDI)法で生成したメチレンブルーカチオン(MB+)のレーザー誘起反応を測定した。一般に、LDI法と比べてMALDI法の方が、内部エネルギーの低い分子を生成すると考えられているが、本研究ではこれを定量的に検証することを最終的な目標としている。今回は励起スペクトルの測定と、内部エネルギーの差分測定結果について報告する。

【実験】
MALDI法ではマトリックスとして2,5-ジヒドロキシ安息香酸(DHB)を用いた。水/アセトニトリル混合溶媒にMB, DHBをそれぞれ溶かし、サンプルホルダー上で混合・乾燥させた。LDI法ではMBのみサンプルホルダーに塗布した。これらに窒素レーザーを照射し、生成したMB(質量数284Da)をパルスビームとして、TMU E-ringに射入・蓄積した。イオン源ではフラグメント等の不純物イオンが生成されるので、イオンの周囲と同期して蓄積時間0.2 - 3.2 msの間にリング内の上下偏向電極にパルス電圧を6回印加することによって、不純物イオンを除去した。その様子を図1に示す。この質量選別されたイオンビームにパルスレーザーを照射し、誘起された分子イオンの選延解離で生成した中性粒子を検出した。蓄積時間0 - 20 msにおける典型的な中性粒子観測の時間スペクトルを図2に示す。この図から、レーザー照射直後、2ケタ近く中性粒子の信号が増大し、その後数
msにわたって、中性粒子由来の信号が観測されていることが分かる。
分子イオンの吸収帯では共鳴的にこのレーザー誘起信号強度が増大するので、解離生成物の励起スペクトルはMB⁺の吸収スペクトルに対応する。本研究では異なるイオン化法で生成したMB⁺の励起スペクトルを測定した。また、パルスレーザー強度の関数として解離の収量を測定して解離に必要な光子数を求めることにより、内部エネルギーの相対値を得た。

【結果】
図3に蓄積時間17 msにおける励起スペクトルと、水溶液中の吸収スペクトルを示す。励起スペクトルと水中のMB⁺の吸収スペクトルを比較すると、吸収帯の波長領域がほぼ同じであることから、どちらのイオン源でも、イオン化の時点における異性化の寄与は小さいと考えられる。また、水中では极大吸収波長が大きくレッキシフトしていることが分かった。しかし、イオン化法の違いによるスペクトルの変化は観測されなかった。次に、図4に蓄積時間17 ms、励起波長620 nmにおける解離収量の励起光強度依存性を示す。傾きは遅延解離反応がリング実験で観測されるために必要な光子数を表している[1]。この図から、解離に必要な光子数はMALDI法で生成したMB⁺は1.4光子、LDI法で生成したMB⁺は1.0光子ということが分かる。信号を与えるMB⁺の内部エネルギーが等しいとするとき、イオン生成後17 ms経過した時点でMALDI法で生成した分子イオンはLDIで生成した分子イオンに比べて内部エネルギーが0.8 eV低いことが分かった。

図3に蓄積時間17 msにおける励起スペクトル。MALDI法で生成したMB⁺(●)、LDI法で生成したMB⁺(△)極大吸収波長は620 nm、と水中での吸収スペクトル(実線)極大吸収波長は660nm。水中のスペクトルの620 nm付近の肩は2量化の寄与によるもの。

図4に蓄積時間17 ms、励起波長620nmにおける中性粒子収量の励起光強度依存性。(両対数プロット)