4E01

Metal–Ligand Cooperation in H₂ Production and H₂O Decomposition on a Ru(II) PNN Complex: the Role of Ligand Dearomatization–Aromatization

(九州大学先導物質化学研究所) OJun Li, Yoshihito Shiota, Kazunari Yoshizawa

The sunlight-driven splitting of water into H_2 and O_2 is an attractive and challenging issue in science today. More recently, Milstein's group achieved a distinct scheme in which H_2 and O_2 were generated in consecutive thermal- and light-driven steps.¹ Heating an aromatic Ru(II) hydrido-hydroxo complex $[C_5NH_3(CH_2P'Bu_2)(CH_2NEt_2)Ru(H)(CO)(OH)]$ in refluxing water for three days resulted in the evolution of H_2 with formation of a *cis* dihydroxo complex. Exposure of this complex to light released O_2 and regenerated the starting hydrido-hydroxo complex. This scheme based on such a simple homogeneous system presents a new idea for the splitting of water. This active complex bears a tridentate PNN pincer ligand, which can donate or accept a proton via facile dearomatization/aromatization process, cooperated with the metal center. This kind of metal PNN (or PNP) complexes have been found powerful for many novel reactions than involves O–H or C–H bond activation. To our knowledge, there is little theoretical work to study this kind of metal Complexes and these interesting reactions so far. Thus, in this paper, we performed detailed DFT calculations to investigate the energetics and mechanism of the thermal H_2 production from water splitting mediated by this Ru(II) PNN complex.

All calculations on a model system (with PMe₂ and NMe₂ groups replacing P'Bu₂ and NEt₂ groups) using the B3LYP hybrid functional were carried out with the Gaussian 03 program. The structure of each stationary point was optimized by taking into account bulk solvent (water) effects with polarizable continuum model (IEF-PCM).

The most likely pathway for H_2 formation and H_2O decomposition on this Ru(II) PNN complex is shown in Scheme 1. In the aromatic complex 1, a proton can transfer from the PNN ligand to the hydride and also to the hydroxyl group. But the latter is reversible. On the other hand, once H_2 is formed, it will be liberated but to be cleaved again. After H_2 liberation, the succeeding H_2O decomposition occurs readily, which favorably leads to the *trans* dihydroxo complex under thermokinetics control. However, the *cis* dihydroxo complex is still the final main product, as a result of thermodynamic control. Although the overall reaction is slightly endergonic, H_2 escapes from the reaction system into gas phase at elevated temperature, driving the reaction to the product side. The rate-limiting step is the formation of H_2 , which has a relatively high activation barrier of 37.6 kcal/mol (Figure 1). But water can facilitate this step as a bridging molecule (Figure 2). All of these may be the reason why the yield of the final product **8** is 45%, and 25% of **1** remains after the reaction proceeds for three days at 100°C.

Scheme 1

Figure 1. Free energy (298 K, in kcal/mol) profile for H₂ production and H₂O decomposition on a Ru(II) PNN complex. The energies in gas phase are also given in the parentheses.

Figure 2. Free energy (298 K, in kcal/mol) profile for addition of a H_2O bridge as part of the coupling of the Ru-bound hydride with a captive proton.

References

[1] Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. *Science* **2009**, *324*, 74.