¹H MAS NMR による無機固体酸塩β-Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]における

プロトン拡散

(千葉工大工¹・産総研計測フロンティア²) 〇尾身洋典¹, 林繁信²

【序】CsHSO₄などに代表される無機固体酸塩は、無加湿の状態で、かつ100℃以上の温度に おいて高いプロトン伝導性を示すために中温作動型燃料電池の固体電解質の有力な候補とし て注目されている[1]。一般に MHAO₄や M₃H(AO₄)₂ (M = Cs, NH₄, Rb, A = S, Se)等の無機固体 酸塩は「超プロトン伝導相」へ相転移することにより、高いイオン伝導性(10⁻³ ~ 10⁻² S cm⁻¹) を示すことが知られている。無機固体酸塩では、AO₄型の四面体イオン(A = S, P)が水素結合 のネットワークを形成しており、プロトンの移動がその水素結合ネットワークを介して行わ れる。これまで、我々のグループでは、幾つかの硫酸塩や硫酸-リン酸混合塩について固体 NMR を用いた研究を行い、プロトン伝導機構を微視的に明らかにし、SO₄ (PO₄)四面体の回転 運動が、水素結合ネットワーク上のプロトン拡散における律速過程であることを報告した[2, 3]。また、無機固体酸塩 α -Cs₃(HSO₄)₂(H₂PO₄)において、隣接した二つの PO₄四面体をつなぐ 水素結合が、隣接した SO₄四面体をつなぐ水素結合や、PO₄四面体と SO₄四面体とをつなぐ 水素結合よりも強く、その結果、SO₄四面体の回転運動が、PO₄四面体の回転運動よりも起こ りやすいことを報告した[4]。

超プロトン伝導相への相転移は、 α -Cs₃(HSO₄)₂(H₂PO₄)とは結晶中における S と P の組成比 が異なる β -Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]においても起こることが報告されている。今回、この β 塩における水素結合ネットワーク上のプロトン拡散を支配する水素結合について調べるため に、x = 0.4の β -Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]を調製し、¹H MAS NMR スペクトルの温度変化の測 定を行った。

【実験】試料は、Cs₂CO₃, H₂SO₄, H₃PO₄をCs:S:Pのモル比が1:0.8:0.2 となるように混合 し、その水溶液から溶媒をゆっくり蒸発させることにより結晶化させた。熱分析には、Rigaku Thermo Flex TG 8120 および Thermo Plus DSC 8230 を用いた。NMR 測定には、 β -Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]の粉末試料を350 K, 真空排気下で加熱乾燥させたものを用いた。 ¹H MAS NMR の測定は、Bruker ASX400 分光計(共鳴周波数 400.13 MHz)を用い、190 - 340 K の温度範囲で行った。

【結果と考察】DSC 測定の結果、昇温過程では、408 K に高温相への転移によるものと考え られる熱異常が観測された。これは、α-Cs₃(HSO₄)₂(H₂PO₄)の場合とほぼ同じ温度であった。 こ の転移は、降温過程では、約 25 K の過冷却を示した。

Fig. 1 に、 β -Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄] (x = 0.4) における ¹H MAS NMR スペクトルの温度変 化を示す。12 ppm 付近に酸性プロトンに対応するブロードな信号が観測された。低温では、 酸性プロトンに対応する信号が、複雑な線形を示しており、複数の信号が重なり合っている と考えられる。温度が上昇するにつれて徐々にそれぞれの信号が区別できなくなる。280 K

より低温では、約10 ppm および14 ppm に shoulder が観測される。高温にすると、高磁場側の shoulder が徐々に消失し、さらに温度を上げると低磁場側の shoulder もみえなくなり、320 K より高温では酸性プロトンに対応する信号を1つの成分として表すことができるようになる。

β-Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]の室温相において、酸性プロトンに対して3つの非等価なサイト が報告されている。温度変化に伴うスペクトルの線形の変化は、温度の上昇により、水素結 合が切断され、この3つの非等価なサイトの酸性プロトン同士の交換が起こるためだと考え られる。そこで、スペクトルの線形の変化を化学交換によるものと仮定し、¹H MAS NMR ス ペクトルの Fitting を行った。

Fig. 2 に Fitting の結果得られた各成分の化学シフトの温度変化を示す。280 K より低温では、 3 つの成分で表すことができるが、280 K より高温では、高磁場側の成分が、他の成分と区別 できなくなった。320 K より高温では、低磁場側の成分も区別ができなくなり、1 つの成分で 表すことができた。この温度変化から β -Cs₃(HSO₄)₂[H_{2-x}(S_xP_{1-x})O₄]において P-O-H-O-P 水素結合の方が、P-O-H-O-S や S-O-H-O-S 水素結合よりも切断されにくいと考え られる。

【参考文献】

[1] S. M. Haile et al., Nature, 410, 910 (2001).

[2] S. Hayashi and M. Mizuno, Solid State Ionics, 176, 745 (2005).

[3] K. Suzuki and S. Hayashi, Solid State Ionics, 177, 2873 (2006).

[4] H. Omi, K. Suzuki and S. Hayashi, Solid State Ionics, 178, 1493 (2007).