3P126

⁷⁷Se NMR 化学シフトにおける ΔE^{-1} の有効値を算出する試み

(和大 シスエ¹・首都大 院理²) 〇林 聡子¹・桂 静郁¹・中西 和郎¹・波田 雅彦²

【序】 NMR化学シフトをその支配因子からの寄与に分離して解析することができれば、 NMR化学シフトの有用性は飛躍的に向上するものと期待される。実験化学者の立場から、 NMR化学シフトをより深く理解し活用する観点からNMR化学シフトをその支配因子に 分離して解析する方法の確立を目指して研究を進めている¹。研究を進めるにあたっては、 常磁性遮蔽テンソル ($\sigma^{e}(N)$: calculated absolute paramagnetic shielding tensors)を活用してい る。 $\sigma^{e}(N)$ は、Ramseyの式における二次項として与えられ(式1,2)、各軌道間の遷移はそ のエネルギー差の逆数に比例することが示される(式3)。今回は、エネルギー差の逆数 項($\Sigma_{i}^{occ}\Sigma_{a}^{unocc}(\varepsilon_{a}-\varepsilon_{i})^{-1}$)を適切に平均化する方法を考察した。我々の提案する方法は、本項 を適切な条件下で加重平均するものである。

$$\sigma^{\mathrm{p}}(N) = \Sigma_{i}^{occ} \sigma^{\mathrm{p}}_{i}(N) \tag{1}$$

$$\sigma_{i}^{p}(N) = \sum_{a}^{unocc} \sigma_{i \to a}^{p}(N) \tag{2}$$

$$\sigma_{zz}^{p}(N) = -(\mu_{o}e^{2}/2m_{e}^{2})\Sigma_{i}^{occ}\Sigma_{a}^{unocc}(\varepsilon_{a} - \varepsilon_{i})^{-1} \times \{\langle \psi_{i}|L_{z}|\psi_{a}\rangle \langle \psi_{a}|L_{z,N}r_{N}^{-5}|\psi_{i}\rangle + \langle \psi_{i}|L_{z,N}r_{N}^{-5}|\psi_{a}\rangle \langle \psi_{a}|L_{z}|\psi_{i}\rangle\}$$
(3)

$$\sigma^{\mathsf{p}}(\mathsf{N};\mathbf{M}) = -\mathsf{A}\,\Sigma_{i}^{\mathsf{occ}}\Sigma_{a}^{\mathsf{unocc}}(\varepsilon_{a} - \varepsilon_{i})^{-1} \times S^{\mathsf{r}}_{L;\,i \to a} \tag{4}$$

$$[S_{L;i\rightarrow a}^{R} = \langle \psi_{i} | L_{z} | \psi_{a} \rangle \langle \psi_{a} | L_{z,N} r_{N}^{-3} | \psi_{i} \rangle + \langle \psi_{i} | L_{z,N} r_{N}^{-3} | \psi_{a} \rangle \langle \psi_{a} | L_{z} | \psi_{i} \rangle]$$

$$\mathbf{O}^{*}_{i \to a}(N) = (\mathcal{E}_{a} - \mathcal{E}_{i}) \quad \cdot \quad (-\mathbf{A}\mathbf{S}_{L; i \to a}) \tag{5}$$

$$(\varepsilon_a - \varepsilon_i)^{-1} = \sigma_{i \to a}^p(N)/(-AS_{L;i \to a}^{\kappa}) = [(\varepsilon_a - \varepsilon_i)^{-1} \times \sigma_{i \to a}^p(N)]/[\sigma_{i \to a}^p(N)]$$
(6)

$$\Delta E_i^{-1} = \sum_a^{unocc} \left[(\varepsilon_a - \varepsilon_i)^{-1} \times \sigma_{i \to a}^{\mathsf{p}}(N) \right] / \sigma_i^{\mathsf{p}}(N) \tag{7}$$

$$\Delta E^{-1} = \sum_{i} \left[\Delta E_{i}^{-1} \times \sigma_{i}^{p}(N) \right] / \sigma^{p}(N)$$
(8)

【結果と考察】 式2-4から式5が導かれる。また式5は、式6を与える(-AS^R_{L;i→a} = $\sigma^{P}_{i\to a}(N)/(\varepsilon_a - \varepsilon_i)^{-1})$ 。ここで、式6の分母と分子を別々に積分することによって、新規NMR解析法に

適合する($\varepsilon_a - \varepsilon_i$)⁻¹の加重平均された 値が得られると期待される。結果を 式7に示し、 ΔE^{-1} と表記した。式7は軌 道間の遷移による寄与の大きさに従 って($\varepsilon_a - \varepsilon_i$)⁻¹を加重平均したもとし て説明される。図1にそのイメージを、 HOMO-LUMOのエネルギー差(ε_{HL})、 イオン化ポテンシャル(ε_{IP})および o^r_i(N)に最も大きな寄与をする軌道 (ψ_k)からのIP($\varepsilon_{\text{IP}-k}$)とともに示した。

表1に、Se*H_n (*: neutral, +, and –) に対する計算結果を示した。図2に $\Delta E_{\text{HL}}^{-1}$ (= $\varepsilon_{\text{HL}}^{-1}$)、 $\Delta E_{\text{IP}}^{-1}$ (= $\varepsilon_{\text{IP}}^{-1}$)、 $\Delta E_{\text{IP}-k}^{-1}$

Fig. 1 Illustration of ε_{HL} , ε_{IP} , $\varepsilon_{\text{IP-}k}$, and ΔE_k .

(= $\varepsilon_{\text{IP},k}^{-1}$)および ΔE^{-1} を図示した。 詳細に検討してみると、 $\Delta E_{\text{HL}}^{-1}$ 、 $\Delta E_{\text{IP}}^{-1}$ および $\Delta E_{\text{IP},k}^{-1}$ の大きさは、 SeH⁻および SeH₅⁻を除けば、 $\Delta E_{\text{HL}}^{-1} > \Delta E_{\text{IP}}^{-1} \ge \Delta E_{\text{IP},k}^{-1} \ge \Delta c_{\text{O}}$ $Qn(\text{SeH}^{-}) = Qn(\text{SeH}_{5}^{-}) = -1$ に起 因して $\varepsilon_{\text{HOMO}} > 0 \ge c_{\Delta} c_{\Delta} d_{\Delta} R^{3}$ 現 れたものと思われる。低配位数 の化合物では $\Delta E_{\text{IP},k}^{-1} = \Delta E_{\text{IP}}^{-1}$ であ り、高配位数の化合物およびセレ ノキシド類では $\Delta E_{\text{IP},k}^{-1} < \Delta E^{-1} \ge c_{\Delta} c_{\Delta}$ る。結果的に、多くの場合 ΔE^{-1} は $\Delta E_{\text{IP},k}^{-1}$ に近いといえる。

 ΔE_i^{-1} に関しては、まれに負の値

として算出される。 $\sigma^{P}_{i \rightarrow a}(N)$ の寄与

Fig. 2 Plot of $\Delta E^{-1}_{\text{HL}}$, $\Delta E_{\text{IP}}^{-1}$, $\Delta E_{\text{IP}-k}^{-1}$, and ΔE^{-1} for $H_n \text{Se}^* \text{O}_o$ (o = 0-2): \blacksquare stands for $\Delta E_{\text{HL}}^{-1}$, \blacksquare for $\Delta E_{\text{IP}}^{-1}$, \blacksquare for $\Delta E_{\text{IP}-k}^{-1}$, and \blacksquare for ΔE^{-1} .

が高磁場シフトであり、($\epsilon_a - \epsilon_i$)が小さい場合にみられる現象である。メチルおよびハロゲン 誘導体についても検討を行っている。また、 ΔE_i^{-1} の値の対する支配因子および全て正の 値を与える計算法も考案した。

Species	ΔE^{-1d}	ΔE^{-1}_{rel}	$\Delta E^{-1} e_{ m v}$	$\Delta E_{ m HL}{}^{-1f}$	$\Delta {E_{\mathrm{IP}}}^{-1g}$	i^h	$\Delta E_{\mathrm{IP-}k}^{-1i}$	k^{j}	$Qn(Se)^k$
$\operatorname{SeH}^{-}(C_{\infty v})$	2.943	1.064	2.950	7.287	-1754	18	7.539	16	-1.032
$\operatorname{SeH}_2(C_{2\nu})$	2.764	1.000 ^l	2.766	4.332	3.935	18	3.935	18	-0.192
$\operatorname{SeH_3^+}(C_{3v})$	2.098	0.759	2.088	2.785	1.589	18	1.589	18	0.450
$\operatorname{SeH_3}^+(D_{3h})$	2.248	0.813	2.245	4.501	1.845	18	1.845	18	0.160
$\operatorname{SeH}_4(T_d)$	2.475	0.895	2.486	9.987	5.454	19	2.293	16–18	0.213
$\operatorname{SeH}_4(C_{2\nu})$	2.050	0.742	2.035	6.521	4.974	19	2.636	18	0.346
$\operatorname{SeH_5^+}(D_{3h})$	1.804	0.652	1.776	5.064	2.054	19	1.384	18	0.612
$\operatorname{SeH}_5^+(C_{4\nu})$	1.806	0.653	1.783	5.866	2.032	19	1.366	16,17	0.594
$\operatorname{SeH}_5^-(C_{4\nu})$	1.999	0.723	1.989	8.195	-276.2	20	4.735	17, 18	0.240
$\operatorname{SeH}_6(O_h)$	1.663	0.602	1.635	5.934	4.022	20	2.115	16–18	0.590
H_2 SeO (C_s)	2.480	0.897	2.497	4.461	3.792	22	2.644	20	0.993
$H_4SeO(C_{2\nu})$	1.759	0.636	1.751	5.239	3.681	23	2.264	20	1.189
$\mathrm{H}_{2}\mathrm{SeO}_{2}\left(C_{2\nu}\right)$	1.711	0.619	1.721	3.878	3.061	26	2.219	22	1.952

Table 1. The ΔE^{-1} , ΔE^{-1}_{rel} , ΔE^{-1}_{v} , ΔE_{HL}^{-1} , ΔE_{IP}^{-1} , and ΔE_{IP-k}^{-1} values for $H_n Se^*O_o$ (* = null, +, or -; o = 0-2), together with *i* in ψ_{HOMO} , *k* in ψ_k , and $Qn(Se)^{a-c}$

^{*a*} Calculated with the DFT-GIAO method employing the 6-311+G(3df,3pd) basis sets. ^{*b*} A utility program (NMRANAL-NH03G) being employed. ^{*c*} In au⁻¹ for ΔE^{-1} , ΔE^{-1}_{v} , ΔE_{HL}^{-1} , ΔE^{-1}_{IP} , and ΔE_{IP-k}^{-1} . ^{*d*} Weighted averaged over all occupied MOs. ^{*e*} Weighted averaged over valence MOs. ^{*f*} ($\varepsilon_{LUMO} - \varepsilon_{HOMO}^{-1}$. ^{*f*} *i* in ψ_{HOMO} . ^{*i*} - ε_k^{-1} : ε_k is the ψ_k energy of which σ_k^{p} (Se) contributes most to σ^{p} (Se). ^{*j*} *k* in ψ_k . ^{*k*} Calculated based on the NBO analysis. ^{*l*} Taken as the standard.

1) W. Nakanishi, S. Hayashi, K. Narahara, M. Hada, Chem. Eur. J. 2008, 14, 9647-9655.

2) W. Nakanishi, S. Hayashi, K. Narahara, D. Yamaki, M. Hada, Chem. Eur. J. 2008, 14, 7278-7284.