1P042

低次元キラル磁性体における磁気異方性の影響

（京大院工1，九工大工2，東北大院理3，筑波大院数物4，京大iCeMS5）
○宮川卓也1，大場正昭1，兼子和佳子1，美藤正樹2，志賀光也3，大塚寛紀4，北川進1,5

【序論】
我々は金属錯体を基盤にした錯体磁性体において、その骨格構造の制御および修飾による機能化の研究を進めている。1-3 金属イオンおよび有機配位子により構築される錯体磁性体の構造は、多様性・柔軟性に富み、その構成要素と骨格の修飾により、磁性の制御も可能である。骨格構造の修飾の1つとして、キラルな骨格の構築が挙げられる。キラルな磁気構造を有するキラル磁性体は、マルチフェロックスを発現する可能性が示唆され、近年注目を集めている。このようなキラルな磁気構造の形成には、磁気中心間の超交換相互作用に加えて、Dzyaloshinskii-Moriya (DM) 相互作用が重要であるため、系の磁気異方性が大きく影響する。我々は錯体磁性体の骨格に光学活性な有機配位子を組み込むことでキラルな構造を構築し、磁気構造のキラリティの転写を目指している。

本研究では、構造異方性が大きい一次元構造を有する磁性体の構築、および構成金属イオンの磁気異方性のバルクの磁性に及ぼす影響の評価を行った。光学活性な配位子としては、嵩高い (1R,2R) or (1S,2S)-1,2-diphenylethylenediamine (L_A^R or L_A^S) を用い、構成金属イオンには磁気異方性が異なる低スピンFeII、低スピンCoIII およびCrIII を用いて、キラル骨格を有する一次元シアノ架橋絶体 PPh_3[Ni^II(L_A)]_2[M^III(CN)]_6·6H_2O (L_A = L_A^R or L_A^S; 1R, 1S (M = Fe), 2R, 2S (M = Co), 3R, 3S (M = Cr)) を合成した。これらの化合物の磁気挙動を比較して、磁気異方性の影響を考察した。また、二次元シアノ架橋磁性体 [Mn^II(HL_a)(H_2O)]_2[Mn^III(CN)]_6·2H_2O (L_a = (R)- or (S)- or racemic 1,2-diaminopropane; 4R, 4S, 4rac)3の磁気挙動についても、合わせて比較検討した。

【実験】
1) NiCl·6H_2O のMeOH-H_2O 溶液に 3 当量のL_A を加えて反応させ、反応溶液を濃縮すること
で前駆錯体 [Ni(L_A)]Cl_2 を紫色粉末として得た。この前駆錯体と、PPh_3Cl、K_2[Fe(CN)]_6 を 1:1.1 の割合でMeCN-H_2O 中で混合し、室温・遮光下で数日静置することで、1R, 1S の黒褐色結晶を得た。
2) 1）と同様の手法で、K_2[Fe(CN)]_6の代わりにK_3[Co(CN)]_6を用いて、2R, 2Sを薄いピンク色の結晶として得た。
3) [Ni(L_A)]Cl_2、PPh_3ClをMeCNに溶かして直管に注ぎ、続いてMeCN-H_2O (1:1) と K_3[Cr(CN)]_6
の水溶液を順番に静かに注ぎ、低温・遮光下にて約 1 ヶ月静置してゆっくり拡散させること
で、薄いピンク色の結晶の 3R, 3Sを得た。
【結果と考察】

X線単結晶構造解析により、化合物 1 − 3 はすべて空間群 P1 で結晶化しており、[Ni(II)]3+ の轴位を μ2-[M(CN)4]+ が架橋した一次元鎖構造を構築していることがわかった（Figure 1）。非対称単位中には結晶学的に独立した 2 種類の一次元鎖が存在しており、一つは a 軸方向に、もう一つは b 軸方向に伸びていた。一次元鎖は a および b 軸に平行に並んで層を形成し、層間に PPh4+ を挟んで c 軸方向に積み重ねていった。また、4 は[Mn(CN)4]3− の面内に 4 つの CN 基が接する [MnIII(HL)2(H2O)]2+ の面内に結合して、MnIII-CN-MnIII 結合による 2 次元シート構造を構築していた。

磁気測定の結果、1 と 3 では NiII-MIII 間に強磁性相互作用が働き、反磁性の CoIII を用いた 2 ではほとんど相互作用がないことが確認された（Figure 2）。しかし、SJ = 3/2 である 1 が 3 K 以下で強磁体に転移したのに対し、SJ = 5/2 の 3 では磁気転移が観測されなかった。これは 1 では磁気異方性の大きな低スピン FeIII により、一次元鎖間により強い DM 相互作用が働くことが一因と考えられる。4 は CN 基を介して MnII と MnIII の間に反強磁性相互作用が働き、21.2 K (4R, 4S), 20.8 K (4rac) 以下でフェリ磁性を示した。

交流磁気応答において、1 では 3 K, 2.5 K に磁気異常が見られたが、3 では何も観測されなかった。1 についてさらに非線形交流磁化率測定を行ったところ、その高調波成分でも同程度に磁気異常を示した。これらより各温度において異なった磁気構造の形成が示唆された。また、μSR の解析からは、3 K から 2.5 K において、2 次元 Ising スピン系から 2 次元型磁気秩序への変化が示された。4 の交流磁気応答と μSR においても、転移温度付近に磁気異常が観測され、キラル体 4S, 4R とラセミ体 4rac では、その挙動は異なっていた。

1 の単結晶の磁化測定を行ったところ、H に対する H より低い磁場で磁化は約 2.3 Nβ まで急激に増加したが、H に対する H で増加した後、緩やかに飽和した（Figure 3）。よって、磁化容易軸は一次元鎖方向にあるが、鎖に垂直な方向にも磁化成分の存在が示唆された。今後は、中性子回折実験により、詳細な磁気構造の決定を試みる。