UCCSD, UQCISD, and UMP2 studies on O₂⋯HF/FH van der Waals complexes: A prospective on the structure, properties and topology

Pradeep R Varadwaj\textsuperscript{a}, Ian Love\textsuperscript{b}, Kentarou Kawaguchi\textsuperscript{a}

\textsuperscript{a} Department of Chemistry, Faculty of Sciences, Okayama University, Tsushima-Naka 3-1-1, Okayama-Ken, Okayama-shi, Japan 700 8530, \textsuperscript{b} Department of Chemistry & Chemical Technology, National University of Lesotho, Roma 180, Lesotho

Introduction
Molecular O\textsubscript{2} (triplet spin state, X^\Sigma^-\textsubscript{g}) is an interesting open shell system of atmospheric importance. Thus, its interaction with molecular HF (singlet spin state) should presumably add insight for the understanding of weak interaction. The O\textsubscript{2}⋯HF complex has been studied several times theoretically for its electronic structure, properties and vibrational characteristics using high level \textit{ab initio} techniques\textsuperscript{1,2} and eventually, identified and analyzed experimentally using FTMW\textsuperscript{3} and IR spectroscopic methods\textsuperscript{4,5}. In all these studies, attention has been given to the complexes of O\textsubscript{2}⋯HF whilst there is almost no study on complexes formed between O\textsubscript{2} and the F end of HF. In this work, we have investigated all the possible types of complexes formed between O\textsubscript{2} and HF/FH. The equilibrium structures, electronic and vibrational properties, and topology of electron charge density at bond critical points of the studied systems are analyzed, compared, and presented.

Results and Discussion
Figure 1 shows the UCCSD/Aug-CC-pVDZ optimized configurations of the complexes of O\textsubscript{2}⋯HF and O\textsubscript{2}⋯FH examined. Figures \textit{a} and \textit{b} are the two close global minima with bent geometry, \textit{c} (T-shape), \textit{d} (linear), and \textit{e} (quasi-linear) are first order saddle point structures of O\textsubscript{2}⋯HF whilst \textit{f} (T-shape), \textit{g} (linear), \textit{h} (quasi-linear), \textit{i} (bent) and \textit{j} (bent) are all minima on the O\textsubscript{2}⋯FH hyper-surface. The global minima \textit{a} and \textit{b} are found to be similar to that reported previously at the UCCSD (T)/aug-cc-pVNZ (N = D, T)\textsuperscript{2} although an inconsistency has been found while comparing with the T-shape complex of O\textsubscript{2}⋯HF, which has been reported as a minimum. The saddle point structures are confirmed by an analysis of the O\textsubscript{2}⋯HF/FH intermolecular bending frequencies (O\textsubscript{2}⋯HF/FH bend, see Table 1).

\begin{table}
\begin{tabular}{|l|l|l|}
\hline
Complex & Inter-molecular Bond Distance (Å) & Reference \\
\hline
O\textsubscript{2}⋯HF bent & 2.220 & \textsuperscript{1} \\
O\textsubscript{2}⋯FH T-shape & 3.202 & \textsuperscript{2} \\
\hline
\end{tabular}
\end{table}

Some physical properties of the complexes are summarized in Table 1. First of all, the intermolecular bond distances range from 2.220 (O\textsubscript{2}⋯HF bent) to 3.202 Å (O\textsubscript{2}⋯FH T-shape) which are less than or close to the sum of the van der Waals radii of atoms involved in bond...
formation (H = 1.20 Å, O = 1.55 Å, and F = 1.47 Å). The dipole moment enhancement (results from an inductive effect) is an important measure of an interaction and is reflected upon complex formation. As shown in Table 1, there is no regular ordering among the values of $\Delta \mu$ (compared with $\Delta E$) in the set of complexes examined, however, the most stable complex is accompanied by a largest value of $\Delta \mu$.

Table 1: Physical parameters of $\text{O}_2...\text{HF}$ and $\text{O}_2...\text{FH}$ complexes obtained from the UCCSD/ aug -cc-pVDZ level.

<table>
<thead>
<tr>
<th>Complex type</th>
<th>$\Delta r (\text{HF})$</th>
<th>$\mu$</th>
<th>$\Delta \mu$</th>
<th>$\Delta E$</th>
<th>$\nu_{\text{O}...\text{HF}}$</th>
<th>$\Delta \nu$</th>
<th>$\nu_{\text{O}2...\text{FH}/\text{HF} \text{bend}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{O}_2...\text{HF}$ bent (120)</td>
<td>0.0009</td>
<td>2.134</td>
<td>0.324</td>
<td>-4.46</td>
<td>2.2201</td>
<td>-15</td>
<td>36.4</td>
</tr>
<tr>
<td>$\text{O}_2...\text{HF}$ bent (123)</td>
<td>0.0011</td>
<td>2.147</td>
<td>0.337</td>
<td>-4.38</td>
<td>2.2279</td>
<td>-23</td>
<td>38.7</td>
</tr>
<tr>
<td>$\text{O}_2...\text{HF}$ T-shape</td>
<td>0.0003</td>
<td>2.008</td>
<td>0.198</td>
<td>-2.38</td>
<td>2.5603</td>
<td>-4.7</td>
<td>-142.6</td>
</tr>
<tr>
<td>$\text{O}_2...\text{HF}$ linear</td>
<td>0.0003</td>
<td>2.103</td>
<td>0.293</td>
<td>-2.81</td>
<td>2.3715</td>
<td>-3.7</td>
<td>-53</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ quasi-linear</td>
<td>0.0004</td>
<td>2.104</td>
<td>0.294</td>
<td>-2.81</td>
<td>2.3729</td>
<td>-3.3</td>
<td>-50</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ Tshape</td>
<td>-0.0003</td>
<td>1.88</td>
<td>0.07</td>
<td>-2.21</td>
<td>3.2024</td>
<td>1.8</td>
<td>30.4</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ lineaar</td>
<td>-0.0004</td>
<td>1.912</td>
<td>0.108</td>
<td>-2.32</td>
<td>3.048</td>
<td>4</td>
<td>40.6</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ quasi-linear</td>
<td>-0.0005</td>
<td>1.912</td>
<td>0.108</td>
<td>-2.25</td>
<td>3.0137</td>
<td>3.4</td>
<td>34.3</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ bent (120)</td>
<td>-0.0003</td>
<td>1.884</td>
<td>0.080</td>
<td>-1.85</td>
<td>3.1288</td>
<td>1.1</td>
<td>5.8</td>
</tr>
<tr>
<td>$\text{O}_2...\text{FH}$ bent (123)</td>
<td>-0.0003</td>
<td>1.885</td>
<td>0.081</td>
<td>-1.84</td>
<td>3.1264</td>
<td>1.2</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Furthermore, the H-bonded complexes were examined to be red-shifted ($\Delta \nu$) with a concomitant elongation of the HF bond ($\Delta r (\text{HF})$) whilst the complexes with $\text{O}_2$ weakly bonded to the F end of HF are blue-shifted with a concomitant HF bond contraction. A red-shift of 15 cm$^{-1}$ is predicted for the HF stretch of $\text{O}_2...\text{HF}$ bent complex ($\angle \text{OOH}=120^\circ$), which is in agreement with a shift of 12.9 cm$^{-1}$ observed experimentally. The UQCISD and UMP2 results are in consistent with those obtained from the UCCSD level, and analyzed.

Analysis of the bonding features using the quantum theory of atoms in molecules (QTAIM) reveals that the existence of bond energetic destabilization of H atom, dipolar polarization, and H atom volume decreased for all the complexes satisfying the eight necessary criterions of Popelier & Koch's criteria for hydrogen bonds. Thus as expected, the bonding effect is greater for the $a$ and $b$ complexes compared to the other geometries. It is also evident from this analysis that the $\text{O}_2...\text{HF}$ bent configuration ($\angle \text{OOH}=120/123^\circ$) satisfies the necessary and sufficient conditions of a hydrogen bonded interaction whilst the $\text{O}_2...\text{FH}$ improper complexes are at the extreme end of weak interactions.

References