4P136

Elongation 法を用いた高分子内過剰電子移動による非線形光学特性解析 (九大院・総理工¹, JST-CREST²) oYu Guang-tao¹, Chen Wei¹, Gu FengLong¹, 青木百合子^{1,2}

The design of novel materials with large nonlinear optical (NLO) responses is currently of great interest due to their potential applications in optical and electro-optical devices. Chen *et al* have theoretically designed and investigated NLO properties of series of single molecule systems with excess electron [1-3], which exhibit considerably large first hyperpolarizability. For example, for the system Li⁺[calix[4]pyrrole]M⁻[3], as shown in the Figure 1, the lone pairs of four N atoms of calix[4]pyrrole push out the 2s electron of the inner Li atom to form the excess electron and

the electron is located in the diffuse *s* orbital. Its electron cloud enwraps the outside M atom and creates anion M^{-} . The excess electron plays an important role in increasing the first hyperpolarizability.

In the present work, a polymer [Li⁺[calix[4]pyrrole]Li⁻]_n chain containing excess electrons has been theoretically

devised for the first time. The NLO properties of the $[Li^+[calix[4]pyrrole]Li^-]_n$ chain are investigated by using elongation method. The elongation method for calculating electronic states of large systems was developed by Imamura et al [4, 5]. Recently, the elongation procedure was extended to include a perturbing static finite electric field [6] and used to determine static (hyper)polarizabilities of long-chain oligomers.

The structure of $[Li^+[calix[4]pyrrole]Li^-]_n$ chain is shown in Figure 2. By the elongation method, the static (hyper)polarizabilities of polymer are investigated at the HF/6-31G level under the applied electric field magnitude of 0.001 au. In the elongation calculations, the starting cluster consists of N=3 Li⁺[calix[4]pyrrole]Li⁻] units and elongated one by one up to N=15.

Figure 2. The structures of polymer $[Li^+[calix[4]pyrrole]Li^-]_n$

Plots of the α , $|\beta|$, γ and corresponding $\Delta \alpha$, $\Delta |\beta|$, $\Delta \gamma$ ($\Delta P=P_N-P_{N-1}$, P is α , $|\beta|$ or γ) versus chain length (N) are shown for [Li⁺[calix[4]pyrrole]Li⁻]_n in Figure 3. It can be seen that the α , $|\beta|$, γ values are increased linearly with increasing N, and the $\Delta \alpha$, $\Delta |\beta|$, $\Delta \gamma$ values are almost converged to constants with increasing N. By using the corresponding $\Delta \alpha$ and $\Delta |\beta|$ values of from N=4 to 15, the analogous curves of $\Delta \alpha$ and $\Delta |\beta|$ versus N are drawn, by which we can deduce that $\Delta \alpha$ and $\Delta |\beta|$ values are 501.23 and 19895.70 au, respectively, when N is infinite. Thus, the α and $|\beta|$ of larger polymer can be estimated by a simple expression, $P_N=(N-15)\times \Delta P+P_{15}$. The [Li⁺[calix[4]pyrrole]Li⁻]_n with N=15 has been shown to exist very large (hyper)polarizabilities to be $\alpha=7262.8$, $|\beta|= 2.715 \times 10^5$ and $\gamma=1.523\times 10^7$ au. Obviously, the $[Li^+[calix[4]pyrrole]Li^-]_n$ polymer owns considerable $|\beta|$ value, which indicates the possibility that the $[Li^+[calix[4]pyrrole]Li^-]_n$ polymer becomes potential high-performance NLO material.

Figure 3. Dependence of (hyper)polarizabilities on the number of units, N.

References

[1] W. Chen, Z.R. Li, D. Wu, R.Y. Li, and C.C. Sun, J. Phys. Chem. B, 2005, 109, 601.

[2] W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, and F.L. Gu, J. Am. Chem. Soc., 2005, 127, 10977.

[3] W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, F.L. Gu, and Y. Aoki, J. Am. Chem. Soc. Commun., 2006, 128, 1072.

[4] A. Imamura, Y. Aoki, and K. Maekawa, J. Chem. Phys., 1991, 95, 5419.

[5] Y. Aoki and A. Imamura, J. Chem. Phys., 1992, 97, 8432.

[6] F. L. Gu, Y. Aoki, A. Imamura, D. M. Bishop, and B. Kirtman, Mol. Phys., 2003, 101, 1487.