4P136

Elongation 法を用いた高分子内過剰電子移動による非線形光学特性解析
（九大院•総理工 ${ }^{1}$ ，JST－CREST ${ }^{2}$ ）○Yu Guang－tao ${ }^{1}$ ，Chen Wei ${ }^{1}$ ，Gu FengLong ${ }^{1}$ ，青木百合子 ${ }^{1,2}$

The design of novel materials with large nonlinear optical（NLO）responses is currently of great interest due to their potential applications in optical and electro－optical devices．Chen et al have theoretically designed and investigated NLO properties of series of single molecule systems with excess electron［1－3］，which exhibit considerably large first hyperpolarizability．For example， for the system Li^{+}［calix［4］pyrrole］ M^{-}［3］，as shown in the Figure 1，the lone pairs of four N atoms of calix［4］pyrrole push out the 2 s electron of the inner Li atom to form the excess electron and

Figure 1 the electron is located in the diffuse s orbital．Its electron cloud enwraps the outside M atom and creates anion M^{-}．The excess electron plays an important role in increasing the first hyperpolarizability．

In the present work，a polymer $\left[\mathrm{Li}^{+}[\text {calix }[4] \text { pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$ chain containing excess electrons has been theoretically devised for the first time．The NLO properties of the $\left[\mathrm{Li}^{+}\left[\text {calix }[4] \text { pyrrole］} \mathrm{Li}^{-}\right]_{\mathrm{n}}\right.$ chain are investigated by using elongation method．The elongation method for calculating electronic states of large systems was developed by Imamura et al［4，5］．Recently，the elongation procedure was extended to include a perturbing static finite electric field［6］and used to determine static （hyper）polarizabilities of long－chain oligomers．

The structure of $\left[\mathrm{Li}^{+}[\text {calix }[4] \text { pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$ chain is shown in Figure 2．By the elongation method，the static（hyper）polarizabilities of polymer are investigated at the HF／6－31G level under the applied electric field magnitude of 0.001 au ．In the elongation calculations，the starting cluster consists of $\mathrm{N}=3 \mathrm{Li}^{+}$［calix［4］pyrrole］Li${ }^{-}$］units and elongated one by one up to $\mathrm{N}=15$ ．

Figure 2．The structures of polymer $\left[\mathrm{Li}^{+}[\text {calix }[4] \text { pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$
Plots of the $\alpha,|\beta|, \gamma$ and corresponding $\Delta \alpha, \Delta|\beta|, \Delta \gamma\left(\Delta \mathrm{P}=\mathrm{P}_{\mathrm{N}}-\mathrm{P}_{\mathrm{N}-1}, \mathrm{P}\right.$ is $\alpha,|\beta|$ or $\left.\gamma\right)$ versus chain length（ N ）are shown for $\left[\mathrm{Li}^{+}[\text {calix }[4] \text { pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$ in Figure 3．It can be seen that the $\alpha,|\beta|, \gamma$ values are increased linearly with increasing N ，and the $\Delta \alpha, \Delta|\beta|, \Delta \gamma$ values are almost converged to constants with increasing N ．By using the corresponding $\Delta \alpha$ and $\Delta|\beta|$ values of from $\mathrm{N}=4$ to 15 ， the analogous curves of $\Delta \alpha$ and $\Delta|\beta|$ versus N are drawn，by which we can deduce that $\Delta \alpha$ and $\Delta|\beta|$ values are 501.23 and 19895.70 au，respectively，when N is infinite．Thus，the α and $|\beta|$ of larger polymer can be estimated by a simple expression， $\mathrm{P}_{\mathrm{N}}=(\mathrm{N}-15) \times \Delta \mathrm{P}+\mathrm{P}_{15}$ ．The $\left[\mathrm{Li}^{+}[\text {calix }[4] \text { pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$ with $\mathrm{N}=15$ has been shown to exist very large（hyper）polarizabilities to
be $\alpha=7262.8,|\beta|=2.715 \times 10^{5}$ and $\gamma=1.523 \times 10^{7}$ au. Obviously, the $\left[\mathrm{Li}^{+}[\text {calix[4]pyrrole }] \mathrm{Li}^{-}\right]_{\mathrm{n}}$ polymer owns considerable $|\beta|$ value, which indicates the possibility that the $\left[\mathrm{Li}^{+} \text {[calix[4]pyrrole] } \mathrm{Li}^{i}\right]_{\mathrm{n}}$ polymer becomes potential high-performance NLO material.

Figure 3. Dependence of (hyper)polarizabilities on the number of units, N.

References

[1] W. Chen, Z.R. Li, D. Wu, R.Y. Li, and C.C. Sun, J. Phys. Chem. B, 2005, 109, 601.
[2] W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, and F.L. Gu, J. Am. Chem. Soc., 2005, 127, 10977.
[3] W. Chen, Z.R. Li, D. Wu, Y. Li, C.C. Sun, F.L. Gu, and Y. Aoki, J. Am. Chem. Soc. Commun., 2006, 128, 1072.
[4] A. Imamura, Y. Aoki, and K. Maekawa, J. Chem. Phys., 1991, 95, 5419.
[5] Y. Aoki and A. Imamura, J. Chem. Phys., 1992, 97, 8432.
[6] F. L. Gu, Y. Aoki, A. Imamura, D. M. Bishop, and B. Kirtman, Mol. Phys., 2003, 101, 1487.

