4D03

水ダイマーにおける水素結合交換の直接観測

京大院理^A、JST-CREST^B、阪大産研^C 熊谷 崇^A、海津 政久^A、八田 振一郎^{A,B}、奥山 弘^A、有賀 哲也^{A,B} 浜田 幾太郎^C、森川 良忠^C

水ダイマーは水の物性を特徴づけている水素結合を含む最も単純な系であり、そのダイナ ミクスは非常に興味が持たれる。ダイマーは水素結合のドナーとアクセプターとから形成さ れている。気相のダイマーは水素結合の交換によってドナーとアクセプターとが互いの役割 を入れ替える運動をしている。この運動は水素原子のトンネリングを介して進行しており、 これは振動 - 回転スペクトルに分裂(doublet)を与える。一方、金属表面における水分子の拡散 やクラスター形成について Pd(111)表面での STM による報告例がある[1]。この報告の中で、 水分子はダイマーになったとき、モノマーやその他のクラスターに比べ、拡散が激しくなる ことが実験的に求められている。このダイマーの特異な挙動はその拡散過程にドナー - アク セプター交換が含まれており、これがトンネリングを介して進行しているためと考えられて いる[2]。本研究では水ダイマーのドナー - アクセプター交換を STM によって直接観測した[3]。

実験は超高真空チャンバー(到達真空度< 5×10^{-11} Torr)に備え付けた低温用 STM で行った。 STM 探針には W を用い、実験はすべて 6 K で行った。基盤試料には Cu(110)を用い、Ar⁺スパッタとアニールを繰り返し行うことで清浄表面を得た {Fig. 1(a)}。

Fig. 1(b)-(d)は水モノマーからダイマーが生成するところを捉えた STM の連続像である。 モノマーは STM 像で丸い輝点として観測される {Fig. 1(b)}。モノマーはバイアス電圧 V_s を高くして走査することで原子列([110]方向) に沿った方向への移動が誘起できる。これを利用してモノマー同士を衝突させた {Fig. 1(c)}。生成したダイマーは 2 状態を行き来する像(bi-stable fluctuating image)で特徴付けられていた {Fig. 1(d)}。

Fig. 2(a)は(H₂O)₂と(D₂O)₂を同時に捉 えた STM 像である。興味深いことに (D₂O)₂では(H₂O)₂で見られる運動が非 常に遅く、図のように静止した状態を観 測することができた。ダイマーは[110] 方向に対称軸を持つ卵型の輝点として 観測される。DFT 計算によって求めた 安定構造{Fig. 2(b)}では、ダイマーの互 いの分子は Cu 原子の真上(on-top site)に 吸着し、それぞれが表面に対して異なる 高さにあった。下の分子が水素結合のド ナー、上の分子がアクセプターになって いる。この構造で行った STM シミュレ ーションは実験結果をよく再現してお

Fig. 2 (a) $(H_2O)_2 \geq (D_2O)_2 を同時に捉えた STM 像。$ (b)ダイマーの吸着構造。STM の fluctuating image は ドナー - アクセプターの交換反応に起因している。

り、アクセプター側が像でより明るく観測される。Fig. 2(a) の挿入図は $(D_2O)_2$ の STM 像で 白線は Cu(110)の格子を示しており、運動は 2 配位の short-bridge サイトを対称な点として起 きていた。実験および計算結果からダイマーで見られる運動は Fig. 2(c)に示した交換反応 (interchange)であると結論付けた。

Fig. 3 (a) ダイマーの上で測定した I-t プロット。 (b) 反応時間のヒストグラム。(c) Rの V_s依存性。 O: (H₂O)₂、Δ: (D₂O)₂ (d) Rの *I*_t依存性。O: V_s = 54 mV、□: V_s = 24 mV

上述の交換反応のメカニズムを議論する ため、その頻度 R を定量的に調べた。Fig. 3(a) は探針をダイマーの上に固定し、フィ ードバック回路を切断した状態で測定した 電流 - 時間(I-t)のプロットである。 電流は2 つの値を行き来しており、電流値のジャン プが交換反応の瞬間に対応している。この I-t プロットから反応間の時間を調べ、Fig. 3(b)のようにヒストグラムとして指数関数 ${N = N_0 \exp(-R/t)}$ でフィッティングを行い、 *R*を求めている。Fig. 3(b)の縦軸は対数表示 になっており、R は直線の傾きとして与え られている。Fig. 3(b) には V。を一定(24 mV) とし、電流量 I(探針の高さ)を変化させて測 定したヒストグラムを同時に示している。 電流値を10倍程度変化(0.06~0.7 nA)させ ても R に変化は見られなかった。このこと から V_s = 24 mV で観測される交換反応は、 トンネル電子や探針の効果ではない、ダイ マー固有のものであると結論付けた。Fig.

3(c)は *R*の*V*_sに対する依存性を (H₂O)₂、(D₂O)₂のそれぞれについてプロットしてある。まず、 *V*_sに対して依存性を示さない 40 mV 以下の領域で(H₂O)₂、(D₂O)₂の*R*を比較すると、60 倍近 い差が見られる。この大きな同位体効果は交換反応に水素原子のトンネリングが寄与してい るためと理解できる。交換反応は Fig. 4(b)のような二重極小のポテンシャルをもつと考えら れ、基底状態をトンネリングによって行き来している {Fig. 4(b)}。理論計算によって遷移状態 と交換反応に対する障壁(~0.24 eV)を求めた。この障壁を 6 K において熱的に超えることはで きず、この結果は交換反応におけるトンネリングの寄与を裏付けるものである。Fig. 3(c) に おいて *V*_s > 40 mV ではトンネル電子の効果によって *R*の増加が見られた。*R*の増加の閾値は (H₂O)₂ で 45 mV、(D₂O)₂ で 41 mV となり、同位体効果が見られた。Fig. 4(d) は *V*_s = 54 mV に おける *R*の *I*₁に対する依存性をプロットした(〇)グラフである。グラフには比較のため *V*_s = 24 mV における *R*を同時にプロットしてある(□)。*V*_s = 54 mV では *R*は *I*₁に対して 1 次の依存性 を示した。運動や反応が電子誘起によって起こる場合、その頻度は *R* ∝ I^N となり、反応次数 *N*は運動(反応)に必要な電子数に相当する。したがって、今回の場合は 1 電子過程で交換反応 が引き起こされている。

(a)

 $V_s > 40 \text{ mV}$ で起きた Rの増加は分子の振動モ ードを励起したことによって起きたと考えた。増 加の閾値に見られた同位体比(~1.1)から励起され るモードは分子間の振動が予測される。計算によ って振動エネルギーを求めたところ対応する振 動モードは Fig. 4(a)に示すような基盤 - ドナーの 伸縮+アクセプターの回転であった。これは交換 の反応座標に直接関係するモードである。このモ ードが誘起されたとしても反応の障壁(~0.24 eV) を超えることはできないが、励起状態では基底状 態に比べトンネル効率が高く、そのため Rの増

Fig. 4 (a) DFT 計算によって求めた振動モ ード。(b) 交換反応のポテンシャルの模式 図と計算によって得られた遷移状態。

加が見られると考えている {Fig. 4(b)の実線矢印で示した過程}。

[1] T. Mitsui et al. Science 297, 1850 (2002).

[2] V. A. Ranea et al. PRL 92, 136104 (2004).

[3] T. Kumagai et al. PRL 100, 166101 (2008).