3P039

極紫外 FEL 光利用実験に用いる多粒子同期計測システムの開発

- Kr クラスター実験での性能評価 -

(産総研計測標準¹,東北大多元研²,京大院理³,

MPI Heidelberg⁴, Frankfurt U.⁵,理研⁶, JASRI⁷)

〇本村 幸治^{1,6}, 齋藤 則生^{1,6}, 福澤 宏宣^{2,6}, Liu XiaoJing^{2,6},

Prümper Georg^{2,6}, 奥西 みさき², 嶋田 浩三², 上田 潔^{2,6}, 原田 哲男²,

豊田 光紀², 柳原 美広², 山本 正樹², 岩山 洋士^{3,6}, 永谷 清信^{3,6},

八尾 誠^{3,6}, Rudenko Artem^{4,6}, Ullrich Joachim⁴, Foucar Lutz⁵,

Czasch Achim⁵, Dörner Reinhard⁵, 永園 充⁶, 東谷 篤志⁶, 矢橋 牧名⁶, 石川 哲也⁶, 大橋 治彦^{6,7}, 木村 洋昭^{6,7}

理研播磨研究所にてX線自由電子レーザー試験加速器である極紫外自由電 子レーザー(EUV-FEL)が現在稼働している.光イオン化過程の実験において, この EUV-FEL を光源として適用した場合,その高い光強度のため多数の荷電粒 子が同時に生成されることになる.本研究はこれらの荷電粒子を高効率での検 出する計測システムの開発が目的である.

実験システムとして、6角型ディレーライン2次元検出器を備えた飛行時間 型運動量分光計によって、荷電粒子の検出を行う.検出器からは位置と時間の 情報を含んだ7チャンネルのパルス信号が出力されるが、これにレーザー光強 度を加えた計8チャンネルの信号を高速デジタイザ(Agilent U1065A Acqiris DC282)に取り込み、しきい値以下のノイズを除いたパルス時間波形をそのまま 保存する.その後、ソフトウェア処理によって波形からパルスの検出時間を計 算し[図1]、最終的に荷電粒子の検出位置と到達時間を求めることになる[図 2].このシステムは従来(CFD+TDC)と比べ、検出効率、デッドタイム、粒子検 出数などの様々な性能についてアドバンテージが期待できる.また、波形自体 が保存されているため、実験後に異なる条件で信号を再処理することが可能で、 測定を最適化することも容易となる.

このシステムを EUV-FEL 光を用いた Kr クラスターの多重イオン化実験に適 用し、実際の性能の検証を行った.実験では多数のイオンが広い時間域にわた り検出され[図2],システムの検出能力を見積もることができた.発表では, この実験結果を元に計測システムの評価を行い,Kr クラスターの多重イオン 化について議論する.

本研究は理研 SCSS 試験加速器運転グループのご協力を受けました. ここに 感謝いたします.本研究の一部はX線自由電子レーザー利用推進研究課題とし て文部科学省から援助を受け行われました.

イオンの到達時間と検出位置