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Introduction 
We have developed QM/MM methods based on generalized hybrid orbitals (GHO)1. The GHO method 

utilizes sp3 hybridized orbitals at each boundary atom; one of them participates in the QM calculation and the 

rest three are used as frozen auxiliary orbitals. Recently, we have formulated the analytical energy derivatives of 

the Møller-plesset second order perturbation theory (MP2) with the GHO method. MP2 reduces the error in the 

reaction and atomization energies of the Hartree-Fock (HF) method by almost a factor of 10. It is also important 

to obtain molecular geometries optimized at MP2 especially when the dispersion forces are not negligible in 

molecular interactions. We present the implementation of the GHO-MP2 gradient method enabling us to 

calculate accurate molecular structures. 

 

Theory 

The nuclear derivative of the μth coefficient of the ith molecular orbital, iCμ , can be expanded in the 

unperturbed MOs and auxiliary orbitals, μαA ,  
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x
iRα  is obtained from the orthogonalization condition between MOs and auxiliary orbitals. The first derivative of 

the overlap integrals between auxiliary orbitals and MOs are 
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where S  is the overlap matrix over the entire atomic orbitals and s  is that over auxiliary orbitals. x
iRα  is 

computed from 
 ( )SCACSAsR ++− +−= )(1 xxx . (3) 
With the MP2 energy expression, 
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the presence of the second term in Eq. (1) leads to the MP2 gradient expression with the GHO correction, 
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where  xEMP2  is the conventional MP2 gradient,2 )2(
ijP , )2(

abP  and )2(
aiP  are second order density corrections, 3 αn  

is the occupation number of the αth auxiliary orbital,  and iαω  satisfies the modified Fock equation, 
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Result and Discussion 
We choose the C7eq (global minimum) conformation of alanine dipeptide to examine the accuracy of 

GHO-MP2 in the optimized structure. The optimized bond lengths with the cc-pVDZ basis set are listed in 

Table I. The numbers in the parentheses are deviations of the GHO-MP2 and GHO-RHF results from the full 

QM MP2 optimized structure. The MP2-GHO method substantially improves the accuracy in the structure 

compared with GHO-RHF.  

The GHO-MP2 gradient method enables us to perform large-scale calculations retaining the precision of 

MP2. We plan to present efficient GHO-MP2 implementation on PKA(c-AMP dependent protein kinase). We 

will also show the timing statistics of the parallel implementation of QM/MM MD with GHO-MP2 gradient. 

 
Table I. Optimized bond lengths (Å) in the QM region of C7eq (basis= cc-pVDZ). 
 TYPE Connectivity MP2 GHO-MP2 GHO-RHF  
QM - QM  9C –  10O 1.2313 1.2188 (-0.0125) 1.1928  (-0.0385) 
 17NH1 –  9C 1.3653 1.3709    (  0.0056) 1.3543  (-0.0110)
    18CT3 –  17NH1 1.4518 1.4481    (- 0.0037) 1.4428  (-0.0090)
 19H –  17NH1 1.0210 1.0215    ( 0.0005) 1.0049  (-0.0161)
 20HA –  18CT3 1.1012 1.0996    ( -0.0016) 1.0890  (-0.0122)
 21HA –  18CT3 1.1048 1.1053    ( 0.0005) 1.0933  (-0.0115)
 22HA – 18CT3 1.0988 1.0990    ( 0.0002) 1.0870  (-0.0118)
Average Error -0.00157 -0.01586 
Standard Deviation 0.00558 0.01017 
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