2P089

van der Waals錯体、ROR -CO₂とROR -OCS(R=R =CH₃, CH₃CH₂; R=CH₃, R =CH₃CH₂)の 量子化学計算

(城西大·理) 岩楯 佳奈子, 紺野 東一, 尾崎 裕

<序論> ジメチルエーテルと二酸化炭素とのvan der Waals錯体、(CH₃)₂O-CO₂に対して、液体アルゴン 中で赤外スペクトル¹が測定され、その後マイクロ波分光²が行われている。硫化カルボニルとの類似錯 体、(CH₃)₂O-OCS³に対してはマイクロ波分光のみが行われている。しかしながら、ジエチルエーテルと の同種の錯体、(CH₃CH₂)₂O-CO₂、(CH₃CH₂)₂O-OCS、同様にメチルエチルエーテルとの錯体、 CH₃OCH₃CH₂-CO₂、 CH₃OCH₃CH₂-OCSについては報告がない。そこで今回、これらの錯体の量子化学 計算をGaussian03を用いて、これら類似の 6 つの錯体について構造最適化、振動数計算を行い、主に 構造の差異、錯体を形成することによるCO₂、OCS、エーテルモノマー振動モードからの振動数のシフト、 電荷の変化等について比較検討をした。

<計算方法·基底系 > Hartree-Fock 法(HF)、2次の Møller-Plesset 摂動法(MP2)、また密度汎関数法 として B3LYP の3種類を用い、基底系には 6-311G(d,p)、6-311+G(d,p)、6-311++G(d,p)、 6-311++G(2d,2p)を用いた。

<結果·考察> (CH₃),O-CO₅, (CH₃),O-OCS、 CH₃OCH₃CH₂-CO₂, CH₃OCH₃CH₂-OCS ItMP2/ 6-311++G(2d,2p), (CH₃CH₂)₂O-CO₂ (CH₃CH₂)₂O -OCS は MP2/6-311++G(d,p)を用いて、最適化され た構造を図1に示す。(CH₃)₂O-CO₂と(CH₃)₂O-OCS は、CO₂あるいは、OCSが(CH₃)₂OのC₂軸にほぼ 垂 直となる 重 原 子 面 C_{2v}構 造をとった が、 (CH₃)₂O-OCSではOCSのO原子が(CH₃)₂Oの側にや や傾いた構造をとった。これは、文献¹⁻³⁾の結果と一 致している。(CH₃)₂O-OCS におけるOCSのO原子 の(CH₃)₂O 側への傾きは、Paulingのファンデール ワールス半径において、O原子(1.4)の方が、S原子 (1.85)よりも、小さいことに起因していると考えられる。 $(CH_3CH_2)_2O-CO_2$, $(CH_3CH_2)_2O-OCS \ Cl_3, CO_2 \ CO_2$ OCSが(CH₃CH₂)₂Oの重原子面外となる構造となった。 $CH_3OCH_3CH_2-CO_2$, $CH_3OCH_3CH_2-OCS$ Ct, CO_2 , bるいはOCSが、(CH₃)₂O-CO₂、(CH₃)₂O-OCS と同様 のエーテル重原子面と同一平面にある構造をとるが、 CH₃OCH₃CH₂-CO₂に対してさえも、CO₂のO原子が CH₃OCH₃CH₂のメチル基側にやや傾いた構造となった。 これらの錯体に対する構造パラメータを表1に示す。 いずれの錯体においても、OCS の C 原子とエーテルモ ノマーのO原子との分子間距離よりも、CO2のC原子

とエーテルモノマーのO原子との分子間距離の方が短くなった。これは、CO₂とOCSのC原子における Mulliken Charge、CO₂のC=+0.901、OCSのC=+0.403(MP2/6-311++G(d,p))であることから、CO₂のC原子 の方が、求電子的効果が強くなり、エーテルとCO₂間の結合強度が増大し、より大きな結合エネルギーを 与えているからと考えられる。

これらの錯体とモノマーの構造における振動数計算を行い、モノマー振動モードからの振動数のシフトを計算した。得られた結果を、CO₂-エーテル錯体とCO₂。反対称伸縮バンドに限定して、表2に示す。

	本研究					計算値			実験値		
	C0	1	2	3	4	C0	1	2	CO	1	2
(CH ₃) ₂ O-CO ₂	2.685	91.1	124.2			2.812 ^{a)} , 2.685 ^{b)}	91.0	124.4	2.711(1) ^{b)}		
(CH ₃) ₂ O-OCS	2.863	97.8	119.1			2.864 ^{c)}	97.7	120.1	2.916(3) ^{c)}	96.5(2)	119.9(1)
$(CH_3CH_2)_2O-CO_2$	2.86			90.9	124.1						
(CH ₃ CH ₂) ₂ O-OCS	2.936			98.1	101.3						
CH ₃ OCH ₃ CH ₂ -CO ₂	2.773	87.7	115.2								
CH ₃ OCH ₃ CH ₂ -OCS	2.998	95.3	118.4								

表 1. 構造パラメータ(C...O/ , /°)

^{a)} Ref.1) MP2/6-311++G(d,p) ^{b)} Ref.2) MP2/6-311++G(2d,2p) ^{c)} Ref.3) MP2/6-311++G(2d,2p)

表 2. 振動数とShift(cm⁻¹)

			(CH ₃) ₂ O-C	$(CH_3CH_2)_2O-CO_2$			CH ₃ OCH ₃ CH ₂ -CO ₂				
		MP2/6-311++G(2d,2p)				MP2/6-311++G(d,p)			MP2/6-311++G(d,p)		
		complex	monomer			complex	monomer		complex	monomer	
		freq	freq	shift	shift ^{a)}	freq	freq	shift	freq	freq	shift
CO_2	2 _a	642.0	662.9	-20.8	-12.1	643.2	657.6	-14.5	638.1	655.2	-17.0
	2 _b	667.3	662.9	4.4	4.9	662.6	657.6	5.0	658.0	655.2	2.8
	1	1318.0	1317.0	1.3	2.7	1342.2	1341.4	0.8	1336.8	1335.4	1.3
	3	2396.0	2397.0	-0.7	2.3	2453.3	2456.1	-2.8	2432.1	2432.8	-0.7

計算方法と基底系により、振動数のシフトの値には違いがみられる。 $(CH_3)_2O-CO_2$ において、本研究の CO_2_3 バンドに対応するShiftは-0.7cm⁻¹で、Ginderenのab initio(MP2/6-311++G(d,p))計算値は+2.3 cm⁻¹ と方向が異なった。しかしながら、彼の液体アルゴン中での赤外スペクトルの測定結果は、-1.3 cm⁻¹で、 本研究の値と同じ〈レッドシフトしている。

¹⁾P.Van Ginderen,W.A.Herrebout,and B.J. Van der Veken, J. Phys. Chem. A 107, 5391 5396 (2003).
²⁾Josh J.Newby, Rebecca A. Peebles, and sean A.Peebles, J.Phys. Chem. A 108, 11234-11240 (2004).
³⁾J osh J.Newby, Rebecca A. Peebles, and sean A.Peebles, J.Phys. Chem. A 108, 7372-7378(2004).