○(長崎工技セ)重光保博(長崎総科大)加藤貴・山邊時雄

1. 序論

断熱電子波動関数を用いた摂動論的アプロー チ [1] を 用 い て 、 周 辺 π 共 役 系 化 合 物 cycl[3.2.2]azine 誘導体の振電プログレッショ ンを解析した。振電相互作用行列を各分子軌道か らの寄与に分解することにより、直感的理解に便 利な軌道振電相互作用解析を用いた[2]。

2. 手法

線形軌道振電相互作用結合定数g_nを,一般的な 1 電子-振動モデルハミルトニアンに対する基準 振動の1次微分で定義する。

$$\begin{split} H &= H_{el} + H_{vib} = \sum_{\gamma} c_{\gamma}^{+} c_{\gamma} \varepsilon_{\gamma} + \sum_{i} \hbar \omega_{i} (b_{i}^{+} b_{i}^{-} + \frac{1}{2}) \\ g_{\gamma i} \hbar \omega_{i} &= \frac{1}{\sqrt{2}} (\frac{\partial \varepsilon_{\gamma}}{\partial Q_{i}}) \end{split}$$

このモデルハミルトニアンに対する正準変換 により、振電相互作用後の分子軌道エネルギー E_{γ} と振動子強度 $P_{\gamma\gamma}(E)$ は次のように表現される [1]。

$$E_{\gamma} = \varepsilon_{\gamma} - \sum_{i} g_{\gamma i}^{2} \hbar \omega_{i}$$
$$P_{\gamma \gamma'}(E) = \frac{2\pi}{\hbar} |\langle \gamma | V | \gamma' \rangle | \exp(-\sum_{i} (g_{\gamma' i} - g_{\gamma' i})^{2}) \rho_{\gamma \gamma'}(E)$$

平衡核間距離において一次微分がゼロになる 性質から、

$$<0\left|\frac{\partial E}{\partial Q_{i}}\right|0>=\sum_{\gamma}\frac{\partial \varepsilon_{\gamma}}{\partial Q_{i}}=\sum_{\gamma}\sqrt{2}g_{\gamma i}\hbar\omega_{i}=0$$

Cyc1[3.2.2]azine (非縮退系、C_{2V}対称)の HOMO-LUMO励起状態(1¹B₂)の線形振電相互作用結 合定数は、HOMO, LUMOに対するg_{y1}の和(差)で定 性的に表現される[2]。

$$\begin{split} g_{B_{2}}^{(H \to L)}(\omega_{m}) &= \frac{1}{\hbar\omega_{m}} < B2 \left| \frac{\partial E}{\partial Q_{m}} \right| B2 > \\ &= \left| g_{B_{2}}^{(HOMO)}(\omega_{m}) \right| + \left| g_{B_{2}}^{(LUMO)}(\omega_{m}) \right| \\ &(g_{B_{2}}^{(HOMO)}(\omega_{m}) \succeq g_{B_{2}}^{(LUMO)}(\omega_{m}) \, \text{が同符号の場合}) \end{split}$$

$$= \| g_{B2}^{(HOMO)}(\omega_m) | - | g_{B2}^{(LUMO)}(\omega_m) \| (g_{B2}^{(HOMO)}(\omega_m) \geq g_{B2}^{(LUMO)}(\omega_m) が異符号の場合)$$

 g_{η} は断熱ポテンシャルの基準振動に対する数 値微分によって求めた。 g_{η} の算出はHF/6-31G*, その他の電子状態計算はMS-CASPT2/ANO-Sレベル で行なった。

計算には Gaussian03 Rev.C (Windows version) と MOLCAS ver.5.3 を使用した。

3. 結果と考察

Cyc1[3.2.2]azineの電子スペクトル (エタノー ル中室温)では 1¹A1->1¹B2吸収にブロードニング が観測される[3]。ブロードニングに関与する可 能性があるπ-π*.n-π*吸収がMS-CASPT2 レベルで 見いだせないことから、振電相互作用に由来する 吸収と考えられる。1¹B,と結合する全対称振動の うち、HOMOと強く結合する振動モードは、 $\omega_{30}(1279 \text{cm}^{-1}), \ \omega_{34}(1399 \text{cm}^{-1}),$ $\omega_8(621 \text{ cm}^{-1})$, LUMOと強く結合する振動モードは、 $ω_{19}(882 \text{ cm}^{-1}), ω_{25}(1072 \text{ cm}^{-1}), ω_{41}(1667 \text{ cm}^{-1}) ~ \mathring{c} ~ \mathring{b} ~ \vartheta$ 線形振電相互作用結合定数への寄与はHOMO, LUMO に対するgnが異符号かつ絶対値が大きい場合に 大きくなるため、最終的に、 $\omega_8(621 \text{ cm}^{-1}), \omega_{19}(882 \text{ cm}^{-1}), \omega_{25}(1072 \text{ cm}^{-1})$ が振電 吸収に関与すると考えられる。

Cyc1[3.2.2]azine に対してベンゼン環が縮環 した 1b, 1c, 6a, 6b について同様な解析を行 なった。共役系が拡がるに従い、対応する UV 極 大吸収波長は長波長側へシフトする。Cs 対称分子 (1b, 1c, 6b)と C2v 対称分子(1a, 6a)を比較して、 対称性有無に起因する明確な分裂は観測されて いないが、振電相互作用を通じた分裂の可能性に ついて議論する。

~	SA-CASSCF		LS-CASPT2		MS-CASPT2	expl.		
State	ΔΕ	ΔE f ΔE		ω	ΔE	ΔE	logɛ	
11A1(g.s)				0.72				
2 ¹ A ₁₍ π-π*)	5.63	2x10-6	4.33	0.71	4.13			
3 ¹ A ₁₍ π-π*)	6.14	0.0057	5.53	0.71	5.38	5.56	4.6	
$4^{1}A_{1(}\pi - \pi *)$	6.55	0.30	5.22	0.70	5.73			
$1^{1}B_{2}(\pi-\pi^{*})$	3.75	0.088	2.98	0.72	2.92	3.05	3.6	
$2^{1}B_{2(}\pi-\pi*)$	5.88	0.0036	4.50	0.70	4.61	4.41	3.8	
$3^{1}B_{2}(\pi-\pi^{*})$	6.54	0.189	5.39	0.71	5.44			
$4^{1}B_{2(}\pi-\pi_{}^{*)}$	7.69	0.123	5.81	0.70	5.89			

Computed vertical excitation energy	gies (eV), oschilator	strangths of cycl[3.2.2]azine
-------------------------------------	-----------------------	-------------------------------

Calculated linear vibronic coupling constants of Cycl[3.2.2]azines

vibration A1 mode (cm ⁻¹)	$\omega_{6}(532)$	$\omega_{g}(621)$	$\omega_{14}(753)$	$\omega_{19}(882)$	$\omega_{_{23}}(1056)$	$\omega_{25}(1072)$	ω ₂ ,(1140)	ω ₃₀ (1279)
$f_{B2}^{(HOMO)}(\omega_m)$	-2.69	-4.08	-0.76	2.17	1.16	-0.73	2.88	-4.95
$f_{B2}^{(LUMO)}(\mathcal{O}_m)$	-0.15	2.99	-1.87	-4.02	-0.77	2.83	2.50	-2.60
$f_{B2}^{(H \rightarrow L)}(\omega_m)$								
$ f_{s_2}^{(BOMO)}(\omega_s) + f_{s_2}^{(LOMO)}(\omega_s) $		7.07		6.19	1.93	3.56		
$ f_{s_2}^{(SOM)}(\omega_n) - f_{s_2}^{(USM)}(\omega_n) $	2.54		1.11				0.33	2.35

$\omega_{32}(1350)$	$\omega_{_{34}}(1399)$	$\varpi_{\scriptscriptstyle 36}(1472)$	$\omega_{_{38}}(1504)$	$\omega_{41}(1667)$	$\omega_{42}(3198)$	$\omega_{44}(3226)$	$\omega_{46}(3255)$	$\omega_{48}(3271$
2.26	-3.24	-2.62	-2.39	-2.73	0.04	-0.29	0.16	-0.35
2.26	-0.44	0.52	-3.13	-6.92	0.20	0.01	-0.59	-0.15
		3.14				0.30	0.75	
0.0	2.80		0.74	4.19	0.16			0.20

 $\omega_{28}(1c: 1464 \text{ cm}^{-1})$

参考文献

- [1] C.Duke, N.Lipari, L.Pietronero, J.Chem.Phys., 65(3), 415 (1976)
- [2] T.Kato, K.Yoshizawa, T.Yamabe, J.Chem.Phys., 113(6), 2188 (2000)
- [3] Y.Tominaga, Y.Shiroshita, A.Hosomi, Heterocycles, 27(9), (1988)