1P078

CO₂-エチレンスルフィドのフーリエ変換マイクロ波スペクトル

(神奈川工大・総研大*) 〇折田由佳里・佐藤明範・川嶋良章・廣田榮治*

【序】われわれはマイクロ波分光により CO-エチレンスルフィド(ES;(CH₂)₂S) 錯体 ¹⁾の回転 スペクトルを研究し、CO-ES 錯体の構造は ES 骨格平面に対して垂直な位置に CO があるこ とがわかった。今回 CO と CO₂、また CO₂-ジメチルエーテル(DME;(CH₃)₂O) 錯体 ²⁾との錯体 構造の違いを系統的に解明するため、CO₂-ES 錯体の回転スペクトルを測定し、分子軌道計算 の結果と比較した。

【実験】市販の ES と CO₂をアルゴンで、それぞれ 0.5 %と 1.5 %に希釈、混合したものを背 圧 3 atm で分子線噴射ノズルから真空チェンバー内に導入して分子錯体を生成した。測定は 5 ~ 25 GHz の周波数領域を 0.25 MHz おきに 20 回積算、掃引して行った。CO₂--(CH₂)₂³⁴S、CO₂--CH₂S¹³CH₂⁻¹³CO₂--(CH₂)₂S 同位体種は天然存在下で測定した。

【結果と考察】測定周波数領域に観測した多数の吸収線から ES 単量体 ³と Ar-ES 錯体 ⁴、 CO₂-Ar 錯体 ⁵によるものを除き、残った吸収線を CO₂-ES 錯体に帰属した。12~13 GHz 近辺 に現れる $b 型 Q \overline{t}(K_a = 2 \leftarrow 1)$ 遷移を手がかりに a 型遷移 28 本と、同程度の強度の <math>b 型遷移29 本を帰属した(図 1)。c 型遷移は観測されなかった。

スペクトルの解析には非対称コマ分子のハミルトニアンを用い、最小二乗法により回転定数と遠心力歪定数を決定した(表 1)。得られた回転定数から c 軸慣性モーメント、 $P_{cc} = -(I_{cc}-I_{aa}-I_{bb})/2$ の値は 19.4253 uÅ² と算出され、ES 単量体の P_{bb} (=19.6394 uÅ²)と良く一致した。したがって CO₂-ES 内の CO₂は ES の CSC 角を 2 等分する面内にあると推定される。この結果は c 型遷移が観測されなかったことと符合する。この構造を基に同位体種のスペクトルを探査し、天然存在下で CO₂-(CH₂)₂³⁴S の a、b 型遷移 17 本および CO₂-CH₂S¹³CH₂の遷移17本、 13 CO₂-(CH₂)₂S の遷移 15本のスペクトルを測定・帰属し、分子定数を得た。

各同位体種の回転定数から算出した rs座標を図2に、数値を表2に示す。Ab initio MO 計算

Fig.1 Observed spectrum of a-type transition of CO₂-ES.

により構造最適化を行って得た回転定数は 実験結果をよく再現した。この構造は類似 分子である CO-ES 錯体の構造と似ている。 しかし回転定数と遠心力歪定数の実測値か ら得た CO₂-ES 錯体の重心間距離、van der Waals 結合の伸縮振動における力の定数、 および結合エネルギーの値(表 3)を比較す ると、CO₂-ES 錯体の方が重心間距離が短 く、CO₂--ES 間の結合は CO--ES 錯体より強

	Observed	<i>ab initio</i> ^{b)}
A / MHz	5243.22208 (7)	5153.1
B / MHz	1494.56587 (4)	1498.6
C / MHz	1277.23962 (4)	1274.2
Δ_J/kHz	2.2038 (8)	
Δ_{JK}/kHz	1.9113 (18)	
Δ_K / kHz	4.825 (8)	
$\delta_J/{ m kHz}$	0.35705 (12)	
δ_K/kHz	-0.85 (6)	
$P_{cc}^{c)}/\mathrm{u}\mathrm{\AA}^2$	19.4253	19.349
a) (m. 1)	• 4 1 4	2

Table.1 Observed and calculated molecular constants of CO_2 -ES complex.^{a)}

a) The number in parentheses denotes 3σ.
b) Calculated by an *ab initio* method at the MP2/6-311++G(d,p) level.

^{c)} *c*-axis moment of inertia ; $P_{cc} = 1/2 (I_a + I_b - I_c)$.

いことがわかった。

 CO_2 -DME 錯体⁵⁾ と CO_2 -ES 錯体を比較し た場合は、重心間距離は CO_2 -ES の方が長く、 伸縮力の定数、結合エネルギーは CO_2 -DME の方が大きいことがわかった。また、S 原子 の van der Waals 半径の値(1.85Å)と CO_2 -ES の $r_{(C...s)}$ の差、O 原子の値(1.40Å)と CO_2 -DME 錯 体の $r_{(C...o)}$ に差があることがわかった。これら のことから CO_2 -DME 錯体には CO-ES 錯体や CO_2 -ES 錯体よりも水素結合の寄与が大きい ことが関係していると思われる。このことは、 CO-ES 錯体と CO_2 -ES 錯体の $r_{(C...s)}$ の差は小 さいが、 CO_2 -DME 錯体の値は大きく離れて いることからもわかる。

Table.2 $r_{\rm s}$ coordinates of CO₂–ES complex.

	CO ₂ -(CH ₂) ₂ ³⁴ S	CO_2 - $CH_2S^{13}CH_2$	¹³ CO ₂ –ES
<i>a</i> / Å	1.177	1.746	1.987
b / Å	0.880	0.667	0.175
c / Å	0.041	0.745	0.052

 Table 3
 Bond length, stretching force constant

 and dissociation energy
 Image: Constant

	CO-ES	CO ₂ -ES	CO ₂ -DME
$R_{c.m.}$ / Å	3.80	3.47	3.26
k_s / Nm^{-1}	3.20	6.91	10.9
E_B/ kJmol^{-1}	3.85	6.95	9.7
$r_{(C\cdots X)}$ / Å	3.47 ^{a)}	3.33	2.71

【参考文献】

^{a)}See Fig.2 for definition of $r_{(S...C)}$.

- 1) 佐藤明範、川嶋良章、廣田榮治、分子分光研究会(神戸)2008.5
- ²⁾ J. J. Newby, *et al*, J. Chem. Phys. **108**, (2004)
- ³⁾ T. Hirao, T. Okabayashi, M. Tanimoto, J. Mol. Spectrosc. **208**(1), 148 (2001)
- ⁴⁾ A. C. Legon, D. G. Lister, *Chem. Phys. Lett.* **189**, 149 (1992)
- ⁵⁾ H. Mäder, et al ,J. Chem. Soc., Faraday Trans., **92**(6),(1996)