1D18

1 **プタンチオールのフーリエ変換マイクロ波スペクトル** (神奈川工大\*,総研大\*\*) 田中雄悟\*,川嶋良章\*,廣田榮治\*\*

【序】我々はマイクロ波分光により 2-メチル-1-プロ パンチオール(イソブチルメルカプタン)<sup>1)</sup>を研究し、 3 つの安定な回転異性体が存在することを明らかに した。今回、2-メチル-1-プロパンチオールと構造異 性体であり、多くの回転異性体の存在が予測される 1-ブタンチオール(CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>SH)(図1)に注目し た。C3 C2 軸回りに関して *trans(T)型と gauche(G)* 型が存在し、C2 C1 軸回りに関して、*trans(T)型と gauche*型:G(1)型,G(2)型があり、さらにC1 SH 軸 回りに関して、*trans(t)*型と *gauche*型:g(1)型、g(2)型が存在する。これらの配座の組合せから 14 個の



Fig. 1 Molecular structure of 1-butanthiol.

安定な回転異性体の存在が予想される。安定な配座と分子の内部運動に詳細な知見を得ること を目的として、フーリエ変換マイクロ波分光法により1-ブタンチオールの回転スペクトルを測 定し、分子軌道計算の結果と比較した。

【実験】市販の1-ブタンチオールをアルゴンで0.5%に混合希釈し、背圧3.0 atm で分子線噴 射ノズルから真空チャンバー内に導入し測定を行った。8.0~16 GHz の周波数領域を、0.25 MHz ごとに20回積算しながら掃引した。精密測定のときは積算回数を50~1000回とした。 <sup>34</sup>S、<sup>13</sup>C 同位体種は天然存在下で測定した。

【結果】測定周波数領域に観測された吸収線の中、 $10.2 \sim 10.4$  GHz に現れた強度の強い1 組の a型遷移(J = 4 3)をてがかりにJ = 3 2、5 4、6 5のa型遷移を帰属した。さらに $9.2 \sim 9.9$  GHz に現れた2 組のa型遷移(J = 3 2)をてがかりにJ = 4 3、5 4のa型遷移を帰属し、次いで b型遷移、c型遷移を帰属した。また、 $8.6 \sim 8.9$  GHz に現れた強度の弱い1 組のa型遷移(J = 3

2)をてがかりに *J* = 4 3、5 4、6 5の*a* 型遷移を帰属し、*b* 型遷移、*c* 型遷移を帰属した。 この 4 種類のスペクトルは、強度の強い順に *T*-*T*-*g* 型、*T*-*G*-*g*(1)型、*T*-*G*-*g*(2)型、*G*-*T*-*g*(1)型の 回転異性体に帰属した(図 2)。











T-G-g(1) form

T-G-g(2) form

*G-T-* g(1) form



*T-T-g*型では*a*型遷移が二重線として観測された(図 3)。 これは SH 基内部回転トンネル効果によって対称状態 と逆対称状態に分かれたためである。非対称コマ分子 の最小二乗法による解析で*T-T-g*型のK型二重項の周 波数が*J*=8の±9 MHzと計算値からずれていた。これ は、対称状態の *J*<sub>1J-1</sub>準位と逆対称状態の *J*<sub>1J</sub>準位との 間で偶然縮重がおこっていると解釈される。

*ab initio* MO 計算を MP2/6-311++G(d,p)レベルで行 *N T-T-g*型:0 cm<sup>-1</sup>, *T-G-g*(1)型:96 cm<sup>-1</sup>, *G-G*(2)-*g*(2) 型:116 cm<sup>-1</sup>, *T-G-g*(2)型:128 cm<sup>-1</sup>, *G-G*(2)-*g*(1)型:134 cm<sup>-1</sup>, *G-T-g*型:165 cm<sup>-1</sup> であった。MO 計算から得ら れた回転定数と双極子モーメント値を表1に示した。 10300.4 10300.6 10300.8 10301 Frequency / MHz

Fig.3 *a*-type transition of the *T*-*T*-*g* form.

T-T-g型、T-G-g(1)型、T-G-g(2)型、G-T-g型においては実験結果とよく対応する。3番目、5番目に安定な構造であるG-G(2)-g(2)型、G-G(2)-g(1)型は実験では確認できておらず現在、未帰属線の中に存在を検討。

すべての回転異性体では天然に存在する<sup>34</sup>S 同位体種、また *T*-*T*-*g* 型では 4 個の<sup>13</sup>C 同位体 種の回転スペクトルを検出帰属した。

| Experimen     | tal <i>T-T-g</i> | T- $G$ - $g(1)$ | G-G(2)-g(2) | T- $G$ - $g(2)$ | G-T-g         | G-G(2)-g(1) |
|---------------|------------------|-----------------|-------------|-----------------|---------------|-------------|
| A /MHz        | 16006.58(9)      | 9196.252(18)    | _           | 9471.52(2)      | 11646.778(12) | _           |
| <i>B</i> /MHz | 1314.105(9)      | 1667.8767(17)   | _           | 1651.483(3)     | 1502.0419(16) | _           |
| C /MHz        | 1261.412(9)      | 1527.8768(16)   | _           | 1509.461(3)     | 1420.8129(16) | _           |
| N(a-type)     | 15               | 15              | —           | 15              | 18            | -           |
| N(b-type)     | _                | 6               | _           | _               | 6             | _           |
| N(c-type)     | _                | 2               | _           | _               | 6             | _           |
| ab initio     | calculation      |                 |             |                 |               |             |
| A /MHz        | 16083            | 9192            | 6508        | 9497            | 11661         | 6536        |
| <i>B</i> /MHz | 1320             | 1672            | 2133        | 1664            | 1515          | 2135        |
| C /MHz        | 1265             | 1535            | 1933        | 1517            | 1429          | 1921        |
| $\mu_a / D$   | 1.84             | -1.15           | -0.97       | 1.57            | 1.75          | -1.78       |
| $\mu_{b}$ /D  | 0.24             | 1.21            | 1.53        | 0.64            | 0.80          | 0.42        |
| $\mu_c$ /D    | 0.71             | 0.59            | -0.01       | 0.81            | 0.60          | 0.56        |

Table I.Obtained rotational constants of four assigned rotational conformers of 1-butanthioland comparison with the results of *ab initio* MO calculations.

## 【参考文献】

1)田中雄悟、佐藤明範、川嶋良章、廣田榮治、分子分光研究会(神戸)2008.5