4P128

高分解能画像観測法による N₂O 光解離過程の研究

— O(¹D)の散乱角度分布と電子軌道整列 —

(理研、清華大†) 小城 吉寛、〇高口 博志、莫 宇翔†、鈴木 俊法

【序】直線分子 N₂O は、紫外吸収帯(185~220 nm)において屈曲構造を持つ A'(¹Δ)および A''(¹Σ') に遷移した後、

 $N_2O + h\nu \rightarrow N_2 (X^1 \Sigma_g^+, \nu_{N2}, J_{N2}) + O(^1D_2)$

の光解離を生じる¹⁾。我々はこれまで、解離生成 N_2 の高分解能散乱画像を観測し、その並進 速度分布から、 N_2O 変角振動励起による光吸収断面積の増大や高回転励起 N_2 フラグメントの 生成を明らかにしてきた。本研究では、 $O(^1D_2)$ の電子軌道角運動量(L = 2)整列に関するパ ラメーターを決定し、光解離動力学のより詳細な知見を得た。

【実験】ナノ秒パルス深紫外光を N₂O/Ar 試料気体の分子線に照射し、解離生成した O(¹D₂)の 並進速度・角度分布を高分解能画像観測装置にて測定した。YAG レーザー励起の色素レーザ ー出力の第三高調波として得た深紫外光は、N₂O の一光子吸収に伴う解離と、生成物の(2+1) 共鳴多光子イオン化 (REMPI) とを同一の光パルスで起こす。O(¹D₂)のイオン化には ¹F₃(203.8 nm)および ¹P₁(205.5 nm)の 2 つの共鳴準位を利用した。O(¹D₂)の散乱画像は文献 1 でも報告し たが、これは連続分子線 (N₂O の振動温度約 295 K) を用い測定したものであり、N₂O 変角 振動 $v_2 = 0, 1, および 2 を始状態とする過程の散乱画像が重なったものである。本研究では、$ 試料気体にイソブタン(iso-C₄H₁₀)を添加し振動温度約 150 K まで冷却したパルス分子線を用いることで、N₂O の振動基底状態だけを始状態とする過程の画像観測を行った。

【結果と考察】図1は、(a)¹F₃状態および(b)¹P₁状態を経由したイオン化により観測されたO(¹D₂)の散乱画像であり、測定画像と p-BASEX 法による断層像を並べて示してある。O(¹D₂)の並進速度分布には、複数の環状構造が明確に現れている。個々の環状分布は対生成する N₂の v_{N2} 、 J_{N2} 終状態に対応しており、回転分布を分離するに足る分解能に達していることを示している。 一方、角度分布については、解離過程において形成された O(¹D₂)の電子軌道角運動量整列に

図 1 N₂O の紫外光吸収により解離生成した O(¹D₂)の散乱画像。 (a) ¹F₃ 状態経由検出、(b) ¹P₁ 状態経由検出。Obs.:測定画像、Slice:断層像 対する検出効率(感度因子)の違い を反映し、(a)と(b)とは明らかに異な る分布を示している。

O(¹D₂)散乱角度分布の解析は、Mo and Suzuki²⁾によって定式化された ¹F₃および¹P₁を経由した REMPI の軌 道整列に対する感度因子を用い、文 献3の理論によって行った。実測値 として得られるのは、¹F₃、¹P₁検出そ れぞれについて、各(v_{N2}, J_{N2})終状態 に対応する角度分布を 6 次までのル ジャンドル偶関数にフィッティング した異方性因子 β_2 , β_4 , β_6 である(計6) 個)。決定する電子軌道整列パラメー ターは散乱速度ベクトルを量子化軸 とする座標系での多重極展開係数で あり、0次の係数β(対生成する N₂(ν_{N2}, J_{N2})の異方性因子)、2次の係数 g₂、 g(2,1)、g(2,2)、4 次の係数 g₄、g(4,1)、 g(4, 2)である(計7個)。実測値の数 が 1 つ少ないため、高次の非対角項 g(4,1)、g(4,2)の値は小さいもの (=0) と仮定した 2 通りのフィッティング を試みた。

図2はフィッティング結果のうち β を J_{N2} に対してプロットしたもので ある。生成 $N_2(v_{N2}, J_{N2})$ 画像観測によ り得られた値と比べると、g(4, 2) = 0と仮定した結果の方が良く一致して

図 3 O(¹D₂)画像解析から得た *M*_J分布の比。 g(4, 2) = 0 を仮定。

おり、他のパラメーターについても誤差が小さいことが示されたことから、g(4, 1) = 0の仮定 よりも確からしいと考えられる。図3は、g(4, 2) = 0と仮定して得られた $O(^{1}D_{2})$ の各 M_{J} 状態 分布比である。 M_{J} は、散乱速度座標系量子化軸への電子軌道角運動量(L = 2)の射影成分を 表す。結果は、 $M_{J} = 0$ 成分と $M_{J} = \pm 1$ 成分が同程度存在し、 $M_{J} = \pm 2$ 成分には分布がほとんど 無いことを示している。また、 N_{2} の回転励起とともに $M_{J} = 0$ 分布が増加するのに対し、 $M_{J} = \pm 1$ 分布は逆に減少するという傾向が明らかとなった。

【参考文献】

- 1) H. Kawamata et al., J. Chem. Phys. 125, 133312 (2006).
- 2) Y. Mo and T. Suzuki, J. Chem. Phys. 109 4691 (1998).
- 3) Y. Mo and T. Suzuki, J. Chem. Phys. 112 3463 (2000).