4P088

## 量子化学的手法によるベンズイミダゾール - TFSI 系イオン液体に関する研究 (横浜国大院)佐藤浩太、〇横山敬一

【緒言】イオン液体は特定の有機のアニオンと無機 のカチオンから成る化合物で、熱安定性、不揮発性、 不燃性などの特性を持つ。そして、比較的高いイオ ン伝導度や電気化学的安定性を有するため、電気化 学的デバイスへの利用の可能性を秘めている。イミ ダゾール系では耐熱性にやや問題があるので、本研 究では、図1に示したイミダゾールより耐熱性が期

究では、図1に示したイミダゾールより耐熱性が期 図1 BImおよびHTFSIの化学構造 待されるベンズイミダゾール(BIm)とビス(トリフルオロスルフォニル)アミド(TFSI)系イオン

液体に着目し、プロトンが分子間を移動する Grothuss 機構によるプロトン伝導機構の可能性、 イオン対間の相互作用の解析を分子レベルで 検討した。

【方法】量子化学計算には、近似法は Hartree-Fock法、B3LYP法、基底関数は6-31G\*\*、 6-31+G\*\*を用いた。まず、BIm、HTFSI、BIm

にプロトンが付加した HBIm<sup>+</sup>、HTFSI から
図 2.
プロトンが脱離した TFSI<sup>-</sup>それぞれの単体
(B3L)

について B3LYP/6-31G\*\*レベルで構造最適化計算、 振動数計算を行い、BIm - HBIm<sup>+</sup>の 2 成分系、 BIm-HBIm<sup>+</sup>-TFSI<sup>-</sup>の3成分系、HBIm<sup>+</sup>-TFSI<sup>-</sup>の2成分系 の安定構造を求めた。プログラムは Gaussian03 を使 用した。

【結果・考察】まず、Grothuss 機構によるプロトン移 動に対応した BIm - HBIm<sup>+</sup>の 2 成分系の構造最適化 計算を B3LYP/6-31G<sup>\*\*</sup>レベルで行った。その最安定 構造を図 2 に示す。この構造の分子面角度は 90.4° である。2N …2H-3N がなす水素結合角は 179.3° であり、ほぼ直線に位置している。表 1 に BIm-HBIm<sup>+</sup>2 成分系の原子間の結合距離と Mulliken's population を示す。表 1 より、相互作用を している N-H 結合はフリーのものより結合距離が 長くなっており、結合強度も弱くなっている。遷移 状態のエネルギーと安定構造のエネルギーの差か ら、BIm - HBIm<sup>+</sup>の 2 成分系のプロトン移動の活





図 2. BIm-HBIm<sup>+</sup>2 成分系の安定構造 (B3LYP/6-31G\*\*)

表 1. BIm-HBIm+2 成分系の N,H 結

| 音距離と Mulliken's population |                |            |  |
|----------------------------|----------------|------------|--|
|                            | bond ∣ength∕ Å | population |  |
| 1N-1H                      | 1.01           | 0.7075     |  |
| 2N…2H                      | 1.57           | 0.2581     |  |
| 3N — 2H                    | 1.10           | 0.4117     |  |
| 4N — 3H                    | 1.01           | 0.7161     |  |
| 3N 4N<br>1N 2N 2H 3H       |                |            |  |

図 3. BIm-HBIm+-TFSI<sup>-</sup>3 成分系の安定 構造 (HF/6-31G\*\*) 性化エネルギーは、4.6kcal/mol (HF/6-31G\*\*)、0.8 表1. BIm-HBIm+-TFSI-3成分系 kcal/mol (B3LYP/6-31G\*\*) と求まった。

BIm-HBIm<sup>+</sup>2 成分系に TFSI<sup>-</sup>が共存した BIm-HBIm<sup>+</sup>-TFSIの3成分系を図3に示す。 BIm-HBIm<sup>+</sup>-TFSIの3成分系の3成分系の遷移状態とプ ロトン移動前のエネルギーの差からプロトン移動の活 性化エネルギーは 11.6kcal/mol(HF/6-31G\*\*)、 11.8kcal/mol(HF/6-31+G\*\*)と求められた。アニオンが近 傍に存在すると、活性化エネルギーが高くなり、プロ トン移動が起こりにくくなる。

B3LYP/6-31+G\*\*レベルで構造最適化された BIm<sup>+</sup> -TFSI<sup>-2</sup> 成分系のイオンペアの安定構造は幾つか存在 したが、そのうちの一つを図4に示す。

相互作用エネルギー /E を系全体のエネルギーと系 を構成する単体のエネルギーの和との差と定義すると、 B3LYP/6-31+G\*\*レベルで得られたカチオン、アニオン、 イオンペアのエネルギーから、この系の相互作用エネ ルギー∠E=-85.02 (kcal mol<sup>-1</sup>) となった。

また、表2の結合長から、イオン間には幾つかの 水素結合が存在することが示唆される。また、カチオ 表2. HBIm+-TFSI-2成分系のア ンのN原子とH原子とアニオンのN原子が成す結合 ニオンとカチオン間の結合距離 角 $\angle N - 2H - 5N = 173.3^{\circ}$ であった。

【結言】HF/6-31G\*\*により求められた各系の相互作用エ ネルギーを表3に示す。各系の相互作用エネルギーを比 較すると、アニオンを考慮すると負に大きくなっている。 このことから、アニオンが系を安定化していると言える。

また、BIm - HBIm<sup>+</sup>の 2 成分系のプロトン移動

表3. 各系の相互作用エネルギーと活性化エネルギー

| の活性化エネルギーと                                   |   |
|----------------------------------------------|---|
| BIm-HBIm <sup>+</sup> -TFSI <sup>-</sup> の3成 | 4 |
| 分系の活性化エネルギ                                   | - |
| ーを比較してもアニオ                                   | - |

| (HF/6-31G^^)                             |                           |                                 |
|------------------------------------------|---------------------------|---------------------------------|
|                                          | ⊿E∕kcal mol <sup>-1</sup> | 活性化エネルギー/kcal mol <sup>-1</sup> |
| BIm−HBIm <sup>+</sup>                    | -22.6                     | 4.6                             |
| BIm-HBIm <sup>+</sup> -TESI <sup>−</sup> | -99.6                     | 11.6                            |

## の N.H 結合距離と Mulliken's

| 1     |       |
|-------|-------|
| nonii | otion |
| DUDU  | auvii |
|       |       |

|         | bond ∣ength∕ Å | population |
|---------|----------------|------------|
| 1N — 1H | 0.99           | 0.7303     |
| 2N…2H   | 1.92           | 0.1173     |
| 3N — 2H | 1.02           | 0.5938     |
| 4N — 3H | 1.01           | 0.6251     |



| 凶4. | HBIm+-TFSI <sup>-</sup> 2 成分モデルの安 |
|-----|-----------------------------------|
| 定構造 | (B3LYP/6-31+G**)                  |

| bond  | bond length/ Å |
|-------|----------------|
| 1H…4O | 2.423          |
| 2H…4O | 2.839          |
| 2H…5N | 1.624          |
| 2H…6O | 2.702          |
| 3H…6O | 2.299          |

BIm-HBIm<sup>-</sup>-TFSI -99.6 HBIm⁺−TFSI⁻ -85.0 ンを考慮するとプロトン移動が起こりにくくなる。Im-HTFSI 系イオン液体においては、Im-HIm<sup>+</sup>の2成分系のプロトン移動の活性化エネルギーとIm-HIm<sup>+</sup>-TFSIの3成分系の活性化エネ

ルギーは HF/6-31G\*\*レベルでそれぞれ 3.9 (kcal mol<sup>-1</sup>)、10.8 (kcal mol<sup>-1</sup>) である。これらと 比較すると、活性化エネルギーが2成分系では0.7 (kcal mol<sup>-1</sup>)、3成分系では0.8 (kcal mol<sup>-1</sup>) 高くなった。Im に置換基がつくことによりかさ高くなり、プロトン移動の活性化エネルギー は、ある程度大きくなるが、大きくは変わらない。