
4P033

Al_nCs⁻ (n=5-11)クラスターの安定構造と負イオン光電子スペクトルに関する理論研究 (千葉工大・工) ○島田寛之, 松澤秀則

【序】近年、二成分合金クラスターの構造や電子状態に対して実験的アプローチが行われるようになり、最近、小安らにより Al-Cs 二成分合金クラスターの負イオン光電子スペクトル(anion PES)が測定された。 1) 当研究室では、これまでアルミーアルカリ金属二成分合金クラスターの構造・電子状態・物性に関する系統的な理論研究を行っており、昨年の分子構造総合討論会では Al_mCs_n⁻ (m=12-10; n=1-3)クラスターの安定構造とanion PES の理論的検討について報告した。Al-Csクラスターのanion PES では数多くの興味ある特徴が見られ、たとえば Al_nCs⁻(n≤8)の領域には複数の大きなピークが観測されるのに対し、n≥9の領域では 1 つの大きなピークのみが出現する。 1)光電子スペクトルのピーク位置や形状には、クラスターの幾何構造や電子状態が深く関係すると考えられる。そこで本研究では、密度汎関数法を用いて Al_nCs⁻(n=5-11)クラスターの安定構造を求め、その構造での Vertical Detachment Energy (VDE)などの物性値を見積もった。これらの anion PES の実験結果と比較することで、Al_nCs⁻(n=5-11)クラスターの幾何構造や電子状態と anion PES の特徴との関係を検討したので報告する。

【計算方法】 Al_nCs :の安定構造を求める際の初期構造は、 $(a)Al_n$ クラスターの中性、カチオンおよびアニオンの安定構造に Cs 原子を吸着させる、 $(b)Al_{n-1}Cs$:の安定構造に Al 原子を吸着させる、black という方法で作成し、black の吸着サイトは、black (a)black (b)いずれの場合も、black (i)on atom、(ii)on bond および(iii)on plane の全てを試みた。平衡構造の安定性は振動解析によって評価し、得られた安定構造を用いて時間依存密度汎関数法(black (black) VDE 値を算出した。計算方法は black B3LYP 法、基底関数は black black A1 原子に black black black Cs 原子に black LanL2DZ をそれぞれ用いた。なお、計算プログラムには black Gaussian03M を使用した。

【結果および考察】 Al_nCs^- (n=5-11)の安定構造を電子状態および対称性とともに図 1 に示す。 Al_sCs^- および Al_6Cs^- では,最安定構造とほとんどエネルギー差のない異性体 $\mathbf{5-b}(\Delta E=0.27 \text{kcal/mol})$ や $\mathbf{6-b}(\Delta E=0.62 \text{kcal/mol})$ が得られた。 Al_nCs^- (n=5-10)の最安定構造は,いずれも Al_n アニオンクラスターの最安定構造に Cs 原子が吸着した形状となった。 $\mathbf{5-a}$ を除いて Cs 原子は Al_n アニオンクラスターの面上に配置され, $\mathbf{6-b}$ では Al_n 部分が 2 つの Al_3 ring によるプリズム構造を形成している。また Al_{13} に見られるような正二十面体に近い形状を持つ安定構造は $n \geq 9$ で形成され, $Al_{11}Cs^-$ では中心 Al 原子に負電荷が集中している semi-icosahedral 構造が最安定となった。

Al_nCs⁻の anionPES では、Al₈Cs⁻とAl₉Cs⁻の間でピーク特性に大きな差異がある。この違いの原因を明ら かにするため、各ピークの帰属を行った。表 1 に 8-a と 9-a の VDE 値を、図 2 に Al_8Cs と Al_9Cs の負イオ ン光電子スペクトルとスケーリング後の stick diagram(計算値)を示す。Al₈Csでは 3 つの大きなピーク (X:2.0-2.2eV, A:2.8eV, B:3.7-3.9eV)が存在する。8-aのVDE値とピーク位置の比較から、ピークXは、9a' および 4a"から、ピーク A は 8a'、3a"および 7a'から、ピーク B は 6a'および 5a'からの光電子脱離によるも のと考えられる。一方、Al₉Csでは、ピーク X(2.7eV)とピーク A(2.9eV)が比較的近い位置に存在し、重な ることで 1 つの大きなピークを形成している。ピーク X は 9-a の 12a と 11a のそれぞれの β 軌道から, また ピークA は 10a および9a のそれぞれの β 軌道からの電子脱離に、ピークC は8a の β 軌道からの電子 脱離に対応する。一般に β 軌道からの電子脱離によるピークに比べて、 α 軌道からの電子脱離のピーク は小さくなることから, ²⁾図2では, β 軌道からの電子脱離に相当するピークが観測されていると考えられる。 したがって、Al₈Csで観測されたピークBに対応するスペクトルが Al₉Csでは得られず、またピークXとAが 重なることで、1 つの大きなピークとなることが明らかとなった。Al₈Cs⁻のピークBを与える軌道(8-a の 6a' および 5a') はクラスターの骨格を形成している Al の 3s orbital 成分を含んでいる。Al₉Cs'では, Al の 3s orbital 成分を含む軌道はピーク X や A を与える 11a と 9a となり、 Al の 3s と 3p orbital が混成しているこ とがわかった。 $n \le 8$ では 6 つ以上の Al 原子と結合している Al 原子が存在しないが、 $n \ge 9$ は中心 Al 原 子をもたない semi-icosahedral 型構造をしており、かご構造部分の Al 原子が 7 つ以上の他の Al 原子と 結合している。この高配位数原子が存在する構造では、3sと3p orbital が混成することが考えられる。なお、 発表では Al_nCs (n=5~7, 10~11)についても光電子スペクトルの帰属を行い,スペクトル形状と幾何構造と の関係を詳細に検討する。

8-a		9-a			
МО	VDE (eV)	MO	VDE (eV)	MO	VDE (eV)
9a'	1.73	15a, α	1.80		
4a"	1.90	14a, α	2.23	14a, β	2.15
8a'	2.52	13a, α	2.49	13a, β	2.30
3a"	2.60	12a, α	2.61	12a, β	2.53
7a'	2.67	11a, α	2.99	11a, β	2.60
6a'	3.39	10a, α	3.01	10a, β	2.73
5a'	3.86	9a, α	3.16	9a, β	2.78
2a"	4.25	8a, α	4.52	8a, β	3.90
					v

表 1 8-aと9-aのVDE値

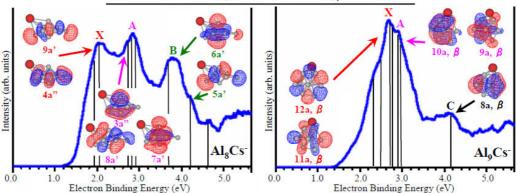


図2 Al₈Cs⁻と Al₉Cs⁻の負イオン光電子スペクトル。1) 図中の MO は表 1 に対応している。

【参考文献】

- 1) K. Koyasu, M. Akutsu, J. Atobe, M. Mitsui, and A. Nakajima, Chem. Phys. Lett., 421, 534 (2006)
- 2) O.Edqvist, E. Lindholm, L.E. Selin, H. Sjogren, and L. Asbrink, Ark. Fisik, 40, 439 (1970)