## 2-pyridoneの互変異性化に対する外部環境と置換基の影響

(広島大院・理<sup>1</sup>, 広島大 QuLiS<sup>2</sup>) ○勝本 之晶<sup>1,2</sup>, 長谷川 傑<sup>1</sup>, 光岡 広樹<sup>1</sup>, 相田 美砂子<sup>1,2</sup>

【序】2-pyridone(2PY)およびその誘導体の互変異性化は、核酸塩基の変性を調べるためのモデル系として、これまでに多くの研究が行われてきた.この結果、ガス状態では keto 型と enol 型が共存し、溶液中や結晶中では keto 型が安定化することが分かっている.しかし、互変異性化に対する置換基や溶媒和の効果については、系統的な研究報告が少なくまだ不明の点が多い.本研究では、マトリックス単離中および希薄溶液中において、2PY および 3-methyl-2-pyridone (3MP)、3-chloro-2-pyridone (3CP)、4-methyl-2-pyridone (4MP)、6-methyl-2-pyridone (6MP)、6-chloro-2-pyridone (6CP)の互変異性体間のエンタルピー差(ΔH)を調べ、互変異性化に対する置換基や溶媒和の効果について議論した.

【実験】2PY および各誘導体を Ar で希釈し, 15 K まで冷却した CsI 基板に吹きつけマト リックス試料を作成した.吹きつけ直前で希 ガス試料温度を制御し, OH および NH バン ド強度比から van't Hoff 式を用いて互変異性 体間のΔH を求めた.また,四塩化炭素(CCl<sub>4</sub>) 溶液中における 2PY およびその誘導体につい て赤外スペクトルの温度変化を測定し,van't Hoff 式から互変異性体間のΔH を求め,希ガ ス中のものと比較した.量子化学計算には Gaussian03 を使用し,MP2/6-31G(d,p)レベル で構造最適化を行い,互変異性体間のエネル ギー差ΔE を求めた.

【結果と考察】Fig.1 に, 吹きつけ温度 423 K における 2PY および各誘導体のマトリックス 単離赤外スペクトル(3650-3200 cm<sup>-1</sup>領域)を示 す. 2PY, 3MP, 3CP, 6MP, 4MP では, 3575 cm<sup>-1</sup> 付近に enol 型の OH 伸縮振動, 3430 cm<sup>-1</sup> 付近に keto 型の NH 伸縮振動に由 来するバンドが観測される.各伸縮バンドが 2 本に分離しているように見えることもある が、光照射実験によってこれらはそれぞれ各 異性体に帰属できることが示唆された. 6CP では NH 伸縮バンドが観測されず, したがっ てガス状態における 6CPの keto 型の存在比は 極端に低いと考えられる. Fig.2 は, 2PY, 3MP, 3CP, 6MP についての van't Hoff プ ロットである.得られた*A*HはTable 1にまと めた.これらの値から、吹きつけ直前のガス 状態においては、これらの化合物においては エノール型が安定であり、互変異性体間のAH は置換基によって変化することがわかる.



*Fig.1.* IR spectra of 2PY and its derivatives in the Ar matrix at 15 K.



*Fig.2.* The van't Hoff plots for 2PY, 6MP, 3CP, and 3MP.

次に四塩化炭素溶液中において,各化合物 の赤外スペクトルの温度変化を調べた.Fig. 3 には,2PYの3300-3700 cm<sup>-1</sup>領域の赤外スペ クトルを示した.この図から明らかなように, 室温付近では keto 型由来の NH バンドが観測 されるが, enol 型由来の OH バンドの強度は 極端に小さい.この OH バンドは温度上昇に 伴ってわずかに増加するが, *Δ*H は+12 kJ mol<sup>-1</sup>と求められ(Fig. 4), CCl<sub>4</sub>溶液中では enol 型は非常に不安定でありその存在比が小さい ことが分かる.これに対し,6CP に関しては, CCl<sub>4</sub>溶液中においては keto 型由来の NH バン ドが観測されるが, enol 型が 6.2 kJ mol<sup>-1</sup>安定 であるという結果が得られた.

ガス状態と溶液中において, keto 型と enol 型の安定性が変化する原因を調べるため量子 化学計算によって各化合物の構造最適化を 行った. 溶媒効果を考慮するためには、分極 連続体(PCM)モデルを用いた.これらの結果 は, Table 1 に示してある. MP2/6-31G(d,p)レ ベルの量子化学計算からは、すべての化合物 について、真空中では enol 型が安定であるこ とが予測されており, エネルギー差の絶対値 は異なるものの希ガスマトリックス実験の結 果をよく説明する結果が得られた.また,溶 媒として CCl<sub>4</sub>を想定した PCM モデルによる 計算では, keto-enol の安定性が逆転するか, エネルギー差が縮まった. さらに, 溶媒とし て CHCl<sub>3</sub> を仮定すると, 6CP 以外の化合物で では keto 型が安定であることが予測されてい る. これは, CHCl<sub>3</sub> 中で 6CP 以外の化合物で enol 型のバンドが全く観測されないことと一 致しており,実験結果をよく再現していると 考えられる.



*Fig.3.* Temperature-dependence of IR spectra for 2PY in a  $CCl_4$  solution.



*Fig.4.* The van't Hoff plots for 2PY(rectangle), 3MP(circle), 6MP(triangle), 4MP(cross), and 6CP(diamond) in  $CCl_4$  solutions.

*Table 1.* Comparison between the experimental relative enthalpies  $\Delta H = H_{enol} - H_{keto}$  and the theoretical relative energies  $\Delta E = E_{enol} - E_{keto}$ 

|     | $\Delta H / kJ mol^{-1}$ |                     | $\Delta E / kJ mol^{-1}$ |                |                                      |
|-----|--------------------------|---------------------|--------------------------|----------------|--------------------------------------|
|     | Ar matrix                | in CCl <sub>4</sub> | MP2/6-31G(d,p)           | $PCM(CCl_4)^c$ | PCM(CHCl <sub>3</sub> ) <sup>c</sup> |
| 3CP | -0.6                     | _a                  | -6.2                     | +0.5           | +5.1                                 |
| 3MP | -1.3                     | +20                 | -5.2                     | +0.3           | +4.0                                 |
| 2PY | -2.4                     | +12                 | -9.5                     | -2.9           | +1.4                                 |
| 4MP | -4.0                     | +13                 | -8.2                     | -1.7           | +2.7                                 |
| 6MP | -4.7                     | +23                 | -7.7                     | -1.9           | +1.5                                 |
| 6CP | -14<                     | -6.2                | -21                      | -18            | -16                                  |

<sup>a</sup> insoluble, <sup>b</sup> MP2/6-31G(d,p)