3P104

カルボン酸誘導体を配位子に用いた二核銅(II)錯体の温度変化やスピン - 軌道カップリングによ る電子吸収スペクトル変化

(神奈川大) 〇久蔵 学、森 和亮、田仲 二朗

1. 緒言

我々は、二核銅(II) 錯体の電子吸収スペクトルが顕著に温度変化することを見出して、磁化率の 温度変化との相関から、低温では、一重項状態が増加することによることを、示してきた。[1] 配 位子にアントラセンをはじめ、大きな芳香環を有する二核銅(II) 錯体では、低温において、可視 部に大きな吸収強度の新しいバンドが出現することを確認し、これらが、配位子の三重項励起状 態が、スピン軌道相互作用により、許容になって、出現したものとして、説明した。[2] 今回は、 配位子に各種のベンゼン誘導体を用いた二核銅(II) 錯体を合成して、電子スペクトルの温度変化 を研究した。また室温では見られなかった新たな吸収バンドが 375nm付近に出現することを確認 し、その起源について、重原子を含む配位子を用いて、重原子効果による考察を行った。

2. 実験

2-メチル、2-クロロ、2-ブロモ、2-ヨード安息香酸銅(II) 錯体の合成を行い、同定は、単結晶 X線回折、FT-IR、磁化率測定により、行った。表1にX線構造解析による、ベンゼン環とカルボ ン酸の回転角の値を示した。安息香酸銅(II) 錯体と比較して、オルト位に置換基を有するものは カルボン酸に対して、ベンゼン環が大きくねじれていることを確認した。電子吸収スペクトルの 測定は、合成した4種に加え、酢酸銅(II)、安息香酸銅(II)、フェニル酢酸銅(II)、ジフェニル 酢酸銅(II) 錯体の8つの銅(II) 錯体について行った。溶媒にはEPA 溶液を用いた。

Table.1 The torsion angle of copper(II) complex										
X-		torsion angle								
		A ₁	A ₂	A ₃	A ₄					
u O	$Cu(C_6H_5COO)_2$	0.0	0.8	0.0	0.8					
)	$Cu(C_6H_4CH_3COO)_2$	37.7	27.7	33.5	36.8					
A ₃	$Cu(C_6H_4CICOO)_2$	42.2	51.6	68.0	46.9					
	$Cu(C_6H_4BrCOO)_2$	36.0	48.9	36.0	48.9					
	$Cu(C_{\alpha}H_{4}ICOO)_{2}$	27.5	68.2	27.5	68.2					

Fig.1 The ORTEP views of copper(II) benzoate(1),diphenylacetate(2), 2-metyl(3),2-chloro(4),2-bromo(5),2-iodo(6)benzoate.

Table.2 The absorption intensity of copper(II) complex

		band I (700nm付近)		band II (375nm付近)	
	300K	77.5K	77.5K		
	ε _{max}	353	545	210	
	f	0.00416	0.00473	0.00280	
	ε _{max}	300	563	110	
Gu(G6H4GOO)2	f	0.00282	0.00437	0.00119	
	ε _{max}	437	663	216	
00(06115011200072	f	0.00455	0.00481	0.00254	
	ε _{max}	484	722	290	
00((06115/2011000)2	f	0.00598	0.00645	0.00521	
Cu(2-CH-C-H-COO)	ε _{max}	555	883	165	
00(2 01130611400072	f	0.00660	0.00740	0.00195	
Cu(2-CIC_H.COO).	ε _{max}	553	904	160	
00(2 0106114000)2	f	0.00674	0.00764	0.00200	
Cu(2-BrC.H.COO)	ε _{max}	513	883	159	
54(2 B106114000/2	f	0.00538	0.00652	0.00188	
$Cu(2-IC_{e}H_{e}COO)_{e}$	ε _{max}	543	870	148	
04(2 10g1 4000)2	f	0.00789	0.00886	0.00212	

全てのスペクトルにおいて、低温で吸収強度の 増加が確認された。可視部の700nm付近に現れる吸 収バンドは、77K で、ε_{max}が 1.5 倍程度増加した。 また、吸収バンドがわずかに短波長側へシフトし た。これらのブルーシフトは、478.6cm⁻¹(酢酸銅)、 436.0cm⁻¹(安息香酸銅)、476.5 cm⁻¹(フェニル酢酸 銅)、539.2cm⁻¹(ジフェニル酢酸銅)、422.0cm⁻¹(2-メチル安息香酸銅)、383.4 cm⁻¹(2-クロロ安息香酸 銅)、453.1 cm⁻¹(2-ブロモ安息香酸銅)、 463.5cm⁻¹(2-ヨード安息香酸銅)のような値で、磁 化率測定より導かれる一重項一三重項分裂の値 2Jの実測値と近い値になっていることより、今回、 測定した銅(11)錯体の強度増加は二核の銅錯体が 低温で一重項状態に変化したためと考えられる。 また、今回の結果より、ベンゼン環のオルト位に 大きな置換基を有する銅(II)錯体が室温、低温と もに、酢酸銅(11)、安息香酸銅(11)、フェニル酢 酸銅(11) 錯体と比較して強度が大きいことを確認 した。これらの強度増加はベンゼン環がカルボン 酸に対して、ねじれを生じていることが何らかの

 1) 久蔵, 渡邊, 森, 田仲 日本化学会第 87 春季年会, 3PC-002 (20) 2) 渡邊, 和田, 森, 田仲 日本化学会第 87 春季年会, 3PC-005 (20) 3) S. Yamada, H. Nakamura, R. Tsuchida Bull. Chem. Soc. Japan (19) 	30 9	953-957			
 1) 久蔵, 渡邊, 森, 田仲 日本化学会第 87 春季年会, 3PC-002 (200 2) 渡邊, 和田, 森, 田仲 日本化学会第 87 春季年会, 3PC-005 (200 	3) S.	. Yamada, H.	Nakamura	a,R.Tsuchida Bull.Chem.Soc.Japan	(1957)
1) 久蔵, 渡邊, 森, 田仲 日本化学会第 87 春季年会, 3PC-002 (200	2)渡	[邊, 和田, 新	森,田仲	日本化学会第 87 春季年会, 3PC-005 ((2007)
	1) 久	、蔵, 渡邊, ネ	森, 田仲	日本化学会第 87 春季年会, 3PC-002	(2007)