3p092

遷移金属ハイドライドの高精度計算による電子状態と分光定数

(NECナノエレ研¹、CREST²、産総研³) 〇友成六美^{1,2}、平野恒夫²、長嶋雲兵^{2,3}

〈序〉

私達は 3d遷移金属原子を含む小分子の電子状態に対して、高度に電子相関を取り入れた計算 を行う事によりその分光定数の研究を行っており、特にハイドライド(M-H)分子に注力している。今 回はCoH分子の結果^{a)}を中心に報告する。CoH分子は実験より³の状態が基底状態であると確定し ている。しかし、³の基底状態に対して異なる二つの平衡核間距離(*Re*)が報告されており^{b,c)}、理論 計算から*Re*を確定する必要がある。又これまでの理論計算^{d)}では、*a*⁵の-*X*³の 励起エネルギーが実 験値 6625 ± 110 cm⁻¹に対して 4597 cm⁻¹しか得られておらず、高精度な再計算が必要である。

<計算方法>

基底関数はClementi-RoettiのSTF(Slater-type Functional)を基にdiffuse関数や分極関数を加え て作成した。Co原子には(9s7p5d2f1g) set, H原子には(5s3p1d) setを用いた。また、新たに作成し たH原子用(5s3p2d) setも試用した。プログラムはAlchemy IIを用い、全ての計算にC_のv対称性を 強制して行った。 $X^3\Phi$ 、 $a^5\Phi$ 状態に対し、バレンス(Coの3s,3p,3d,4s,4p軌道、Hの1s軌道)14軌道に18 電子を割り振るCASSCF計算で得られたMOを用いて、バレンス内の電子相関を取り入れる MR(multi-reference) SDCI + Q(Davidson補正)計算を行った。さらに得られた各状態の波動関数を 用いて、田中らによるMRCPA(MR coupled pair approximation)法により、CI空間に対する摂動補正 として多電子励起の効果を見積もった。

<結果と考察>

初めに³ Φ基底状態のポテンシャル曲線の極小近傍の 2.84 a.u.におけるCASSCF計算の結果 得られた主な電子配置とその係数を与える(電子配置が同じでspin couplingが異なる物は割愛)。

CSF 1:	$\ldots 4\sigma^{2}5\sigma^{2}6\sigma^{2}7\sigma^{2} \qquad 2\pi^{4}3\pi^{3}1\delta^{3}$	Coef. = -0.975
CSF 2:	$\ldots 4\sigma^{2}5\sigma^{2} \ \ 6\sigma^{2} \qquad 8\sigma^{2}2\pi^{4}3\pi^{3} 1\delta^{3}$	Coef. = 0.122
CSF 3:	$\ldots 4\sigma^{2}5\sigma^{2}6\sigma^{2}7\sigma^{1}8\sigma^{1}\ 2\pi^{4}3\pi^{2}4\pi^{1}\ 1\delta^{3}$	Coef. = -0.074
CSF 4:	$\ldots 4\sigma^{2}5\sigma^{2}6\sigma^{2}7\sigma^{1}8\sigma^{1}2\pi^{4}3\pi^{3}1\delta^{3}$	Coef. = 0.063
CSF 5:	$\ldots 4\sigma^{2}5\sigma^{2} \qquad 7\sigma^{2}8\sigma^{2} 2\pi^{4}3\pi^{3}1\delta^{3}$	Coef. = 0.054

CSF 3 は主電子配置から見て $\sigma \to \sigma * \pi \to \pi * 2$ 電子励起電子配置で、遷移金属の2原子分子の 結合には大きな寄与をする事が経験から分かっている。CSF 4 は基底状態の解離極限Co⁺ ($3d^{8}$ ³F) + H⁻に至るために必要な電子配置で、4参照関数(4-Ref)を用いたMRSDCI(+Q)計算、及び MRCPA(4)計算ではCSF 1~CSF 4 の電子配置を参照関数とした。5 参照関数(5-Ref)計算ではさら にCSF 5 の電子配置も参照関数に加えた。一方、 a^{5} の励起状態はHartree-Fockで記述される電子 状態(電子配置 …4 σ^{2} 5 σ^{2} 6 σ^{2} 7 σ^{1} 8 $\sigma^{1}2\pi^{4}3\pi^{3}1\delta^{3}$) であり、Co⁺($3d^{7}4s^{1}5F$) + H⁻に解 離する。MRSDCI +Q、MRCPA計算は 1 参照関数で行った。尚、CASSCF計算では⁵の状態の方が 常に³の状態より低く得られ(4.8 mE_h)ており、動的電子相関を取り入れる事により³の状態の方が安

State	R, / Å	$\omega_{ m e}$ / cm ⁻¹	$E(\chi^2 \Phi \cdot a^5 \Phi)/$	大きく 34 m <i>E</i> hにもなる。(2E13
	0		cm ⁻¹	講演での議論を参照。)
⁵ Φ				
1-ref CI+Q	1.6261	1774	0.0	表には、得られた $X^3\Phi$ 、 $a^5\Phi$
MRCPA(4)	1.6320	1756	0.0	状態の 分光定数を、実験値と共
Exp.1b)	1.67 ± 0.05		0.0	に与えてある。尚、励起エネル
Calc. ^{d)}	1.640	1599	0.0	ギーに関して、⁵Φ励起状態を基
				準として ³ Φ基底状態とのエネル
$^{3}\Phi$				ギー差をマイナス値で与えた。
4−ref CI+Q	1.5074	1938	-6218	(マイナス符合を取り除けば、各
MRCPA(4)	1.5066	1929	-6331	計算方法におけるX ³Φ→a ⁵Φ
5-ref CI+Q	1.5095	1922	-6536	の励起エネルギーとなる。)
MRCPA(4)	1.5064	1923	-6218	4個の参照関数を用いれ
Exp.1b)	1.542	1925	-6625± 110	ばMRSDCI+Q計算でも、特に <i>a</i>
Exp.2 ^{c)}	1.5313			⁵Φ状態への励起エネルギーに
(同補正	1.5161)			ついて、実験値と対応の良い値
Calc. ^{d)}	1.487	2026	-4597	6218 cm⁻¹が得られる。又 ³ Φ基
				— 底状態のR。に関しては、計算結

定(4-ef MRSDCI+Qで 28 mE_h)となり、正しい基底状態が得られた。当たり前かもしれないが、低ス ピン状態の方が高スピン状態よりも動的相関が大きく、CoH分子の場合、2状態のその差は殊の外

果と比べると、二つの実験値のうち 1.516Å (Exp.2 の補正値)の方が尤もらしい。だが、 R_e =1.516Å とすると、4-refの計算値は実験値よりやや小さ目である。5-refを用いたMRSDCI+Q計算を行う事に より、 R_e は若干延びて 1.5095Åが得られ、実験値に近づく。また、励起エネルギーも更に改善し、か なり実験値に近い 6536 cm⁻¹が得られた。MRCPA(4)計算により多電子効果を取り入れる事により R_e は若干減少する。尚、5-refのMRCPA(4)計算は中途の値であり、最終結果は当日示す。³①基底状 態の振動数は、4-ref、5-refの計算で実験値をほぼ再現する。特に 5-refではMRSDCI+Q計算でも 実験値と 10 cm⁻¹以内での一致が見られた。

a⁵の状態でも計算によるReは実験値の誤差範囲内に得られ、又、振動数に関しては先の計算と 同様に³の基底状態よりもかなり小さな値が得られた。尚、⁵の状態では、MRCPA(4)計算を行うとR_iは 減少し、その程度は基底状態よりもやや大きい。残りの実験値との差異、特に基底状態のR_iがまだ 若干実験値よりも短い事に関しては、相対論的精算によって議論される事が今後の課題となるだろ う。また、H原子の基底関数に関しても、少々議論を行う予定である。

a) M. Tomonari, R. Okuda, U. Nagashima, K. Tanaka, and T. Hirano, *J. Chem. Phys*. 126, 14430 (2007)

b) A. E. S. Miller, et al., *J. Chem. Phys.* 87, 1549-56 (1987)

- c) S. P. Beaton, et al., J. Mol. Spectrosc. 164, 395-415 (1994)
- d) M. Freindorf, et al., J. Chem. Phys. 99, 1215 (1993)