3C01

TEMPO ラジカル基を有する常磁性イオン液体の開発

(京大院理^{*}・京大低物セ^{**}) 田中博房^{*}・吉田幸大^{*}・斎藤軍治^{*,**}

【序】

イオン液体は蒸気圧が極めて低い、電気伝導性 が高い、液体温度範囲が広いなどの特徴を持っ ており、構成イオンの選択や化学修飾により多 様な機能を発現させることが可能である。当研 究室ではこれまで多機能性イオン液体の開発 を目的として、高伝導性 - 常磁性イオン液体 [EMI][FeCl₄]などを報告している¹⁾。しかし、磁 性スピンを担っているのが無機イオンである ため、化学修飾による液体物性の制御が困難で

図 1. C_nMIとTEMPO-OSO₃の分子構造

あった。そこで本研究では、修飾可能な有機分子から成る常磁性イオン液体の開発を目指し、有 機 ラジカル分子 2,2,6,6-tetramethyl-1-piperidinyloxyl-4-sulfate陰イオン (TEMPO-OSO₃、図1)と 1-alkyl-3-methylimidazolium陽イオン(RMI、図1)を用いて、イオン液体の合成を試みた²⁾。

【実験】

TEMPO-OHよりNa[TEMPO-OSO₃]・H₂Oを合成し³⁾、アセトンで再結晶したNa[TEMPO-OSO₃]・H₂O と[RMI]CIの複分解によって[RMI][TEMPO-OSO₃]を合成した(RMI: EMI, BMI, C₆MI, C₈MI)。生成物 は酢酸エチル/水、もしくはクロロホルム/水により分液精製した。収率は 72% ~ 95%であった。 ¹H-NMR、IR、エネルギー分散型X線分析(EDS)、及び元素分析により同定し、DSC、交流インピ ーダンス、ESR、SQUID測定より熱的特性、イオン伝導性、磁性を評価した。

【結果と考察】

1 は赤色固体(融点 57 ℃)として得られ、急冷により-22 ℃ 以下でガラス状態を示した(表1)。一方、長いアルキル鎖を有する2-4 は赤色粘性液体として得られた。1-4 はいずれも比較的高 いガラス転移温度(-22 ~ -31 ℃)を持っており、TEMPO 基の高い凝集力を示唆している。

粘性ならびにイオン伝導性は Arrhenius 的温度依存性を示した。アルキル鎖間の van der Waals

	2 32	54				
	陽イオン	ガラス転移点	融点	分解点	イオン伝導度(70°C)	有効磁気モーメント(70°C)
		/ °C	/ °C	/ °C	$/ \mathrm{S} \mathrm{cm}^{-1}$	/ $\mu_{ m B}$
1	EMI	-22 ^a	57	ca. 200	2.0×10^{-4}	1.72
2	BMI	-27	_ b	ca. 230	1.4×10^{-4}	1.73
3	C ₆ MI	-27	_ b	ca. 220	7.8×10^{-5}	1.68
4	C ₈ MI	-31	_ b	ca. 210	4.4×10^{-5}	1.61

表1. [RMI][TEMPO-OSO3]の物性

^a急冷(-30°C min⁻¹)により観測、^b観測されず

相互作用や分子サイズの増加のため、アルキル鎖が長くな るにつれて伝導性が低下している。高いインピーダンスの ため、1の融点(57°C)近傍におけるインピーダンス測定は できていないが、融点以上の 60°C から 64°C まで伝導度 の大きな増加が観測された。現在、インピーダンス測定用 セルの改良を行っている。

1 - 4のneat状態における室温ESRスペクトルは、 いずれもLorentz型信号を示した(図2)。g因子は 2.0067~2.0068 と見積もられ、ニトロキシド系ラジカ ルの値とよく一致している。線幅 ΔH_{pp} はアルキル鎖が短く なるにつれて 1.62 mT(4)から 1.14 mT(1)に小さく なる。これはアルキル鎖長とともに、neat状態でのスピン 濃度が下がることによる、交換による先鋭化のためだと考 えられる。また、すべての塩は 1 × 10⁻³ MのCHCl₃溶液中で、 TEMPOラジカルの¹⁴N核スピン(*I*=1)による超微細構造(A_N =1.59~1.60 mT)を持つESR信号を示した(図3)。

1 - 4の静磁化率測定を 0.1 Tの磁場下で行った。有効磁気モーメントは 1.61~1.73 μ_B(70°C)と見積もられ、90%以上のS=1/2 ラジカルに対応する。Curie-Weiss則によく合致し、Curie定数は0.33~0.39 emu K mol⁻¹、Weiss温度は-0.46~-4.3 Kと見積もられた。χT(χ:磁化率)は約 50 K以下でTEMPOラジカル間の反強磁性相互作用によって減少し、1.9 Kまで長距離秩序は見られなかった。1は融点(57°C)付近でχTの値が 0.02 emu K mol⁻¹上昇した(図4)。これはスピン対を生成していた一部のTEMPO-OSO3陰イオンが融解に伴い解離したためと考えられる。しかし、[EMI][FeCl₄]や[EMI][FeBr₄]では融解によるχTの減少(0.02~0.05 emu K mol⁻¹)を観測しており¹⁾、この違いについては現在検討中である。

図 2. 4の neat 状態の室温 ESR スペクトル

図3.4の1×10⁻³ M CHCl₃溶液中の室温ESRスペクトル

図 4.1の昇温過程における_XTの温度依存性 (<u>x</u>:磁化率)。点線はS=1/2 スピンに対応した XT 値(0.375 emu K mol⁻¹)

【参考文献】

1) (a) 斉藤軍治, イオン性液体 - 開発の最前線と未来 - , 大野弘幸監修, シーエムシー出版, pp.137–143 (2003). (b) Y. Yoshida, A. Otsuka, G. Saito, S. Natsume, E. Nishibori, M. Tanaka, M. Sakata, M. Takahashi, T. Yoko, *Bull. Chem. Soc. Jpn.* **2005**, *78*, 1921. (c) Y. Yoshida, G. Saito, *J. Mater. Chem.* **2006**, *16*, 1254.

2) Y. Yoshida, H. Tanaka, G. Saito, Chem. Lett., in press.

3) H. Akutsu, J. Yamada, S. Nakatsuji, Synth. Met. 2001, 120, 871.