(EDO-TTF)₂XF₆ (X = P, As, Sb)の金属 – 絶縁体転移における

アニオンサイズ効果

(京大低物セ¹, 科技機構 ERATO², 京大院理³) 〇中野 義明¹, 矢持 秀起^{1,2}, 斎藤 軍治^{1,3}

は同形構造を持ち、ヒステリシスを伴った金属 - 絶縁体転移を示す。高温相ではすべてのドナ ー分子が+0.5 価に帯電し平面的構造を保ってい る。充填様式としては、ほぼ均一な積層カラム 構造が形成されている。低温相では平面的な分 子(F)と湾曲した分子(B)が半数ずつ存在し、それ らが[B, F, F, B]という4量体を形成している。こ れに対応して、各分子が[0,+1,+1,0]の電荷を持 つ電荷秩序状態となっている。また、高温相で 見られる陰イオンの回転ディスオーダーが、低 温相では部分的に抑制されている。すなわち、 この転移ではパイエルス転移、電荷秩序化転移、 アニオン秩序化転移が同時に起きている[1]。さ らに、1 では超高速・高効率の光誘起相転移が

報告されており、この系 における強い電子-格子 (振電)相互作用の存在が 指摘されている[2]。

以前我々は(EDO-TTF)₂XF₆の転移機構の解明、 転移温度の制御を目的として、アニオンのサイ ズ効果を検討し、PF₆ < AsF₆ < SbF₆の順にアニ オンサイズが大きくなるほど転移温度が低くな ることを報告した[3]。今回は、アニオンが構造 に与える影響を系統的に調べ、転移温度および ヒステリシス幅との関係を検討した。

【結果と考察】これらの塩については、転移温 度をよぎる温度変化により、結晶が割れること が多い。昇温・降温を繰り返しながら磁化率の 測定を行ったところ、2サイクル目以降は主に 示した。2量化の程度自体は3つの塩ともに小 降温過程の転移温度(T_{MI}↓)が高温側にシフトし、 数サイクル後にはある一定のヒステリシス幅 るほど2量化が強く、温度低下に伴ってやや2

【序】(EDO-TTF)₂XF₆ (X = P (1), As (2), Sb (3)) (ΔT_{MI})を示した(Fig. 1)。このことは、高温相か ら低温相へ転移する際の過冷却状態が結晶の粒 度・欠陥・不整などの影響を受けやすいことを 意味していると考えられる。それぞれの塩の降 温過程、昇温過程(T_{MI}↑)、およびその平均の転移 温度($T_{\rm MI}$)とヒステリシス幅を Table 1 に示す。1 サイクル目と6サイクル目のどちらを比較して もアニオンサイズが大きいほど、T_{MI}が低く、 $\Delta T_{\rm MI}$ が大きいことが分かった。

Fig. 1 χ -*T* plot of **2** for the first (\bigcirc) and sixth (\bigcirc) thermal hysteresis loop, respectively.

Table 1	Transition	temperatures	(K) of	(EDO-TTF	$)_2 XF_6$
---------	------------	--------------	--------	----------	------------

	cycle#	$T_{\rm MI}\downarrow$	$T_{\rm MI}$	$T_{\rm MI}{}^a$	$\Delta T_{\mathrm{MI}}{}^{b}$		
1	1	276.7	279.2	278.0	2.5		
	6	278.5	279.5	279.0	1.0		
2	1	266.5	274.5	270.5	8.0		
	6	268.0	273.5	270.8	5.5		
3	1	229	251	240	22		
	6	235	249	242	14		
<i>a</i> m	(m) _ m	the has					

 ${}^{a}T_{\mathrm{MI}} = (T_{\mathrm{MI}}\downarrow + T_{\mathrm{MI}}\uparrow)/2. {}^{b}\Delta T_{\mathrm{MI}} = T_{\mathrm{MI}}\uparrow - T_{\mathrm{MI}}\downarrow.$

高温相におけるドナーの分子配列を Fig. 2(a) に示す。高温相における積層方向の2量化の程 度を2量体内と2量体間の分子間重なり積分を 用い、 $\Delta s/\langle s \rangle = 2(|s1| - |s2|)/(|s1| + |s2|)$ で評価する と[4]、その値は Fig. 2(b)のような温度依存性を さいものであるが、アニオンサイズが大きくな

量化が強まることが分かった。

Fig. 2 (a) Donor arrangement of 1 at 300 K. (b) Schematic drawing of charge and bond pattern. (c) Temperature dependence of the degree of dimerization for 1 (\bigcirc), 2 (\triangle), and 3 (\square), respectively.

低温相におけるドナーの分子配列を Fig. 3(a) に示す。4量化の程度を ∆s/<s> = 4(|s1| -|s3|)/(|s1| + 2|s2| +|s3|)の値で評価すると、この値 は3<2<1の順で大きくなっていることが分か った(Fig. 3(c))。すなわち最もアニオンサイズの 大きな SbF₆ 塩において、高温相における2量化 が強く、低温相における4量化が弱い。

次に、結晶中でドナー分子が形成する空隙に いかにアニオンが隙間無く充填しているか(適 合度)を見積もるため、まず150Kでの結晶構造 からアニオンの体積(Va)を見積もった。これを用 いて(EDO-TTF)₂XF₆1組成式あたりの格子体積 とアニオンの体積の差(V/Z-Va)の関係を調べた (Fig. 4)。それぞれの塩におけるドナー分子の占 める体積が同じであるとすると、V/Z-Vaは結晶 格子中の空隙の体積の指標と考えられる。300 K(高温相)においても 150 K(低温相)においても、[1] A. Ota et al., J. Mater. Chem., 2002, 12, 2600. アニオンサイズが大きいほど空隙の体積が小さ くなっている。いずれの温度においても、より 空隙の体積が小さい 3 では、より分子間相互作 [4] Y. Nogami et al., J. Phys. IV France, 2005, 用が強くなっているものと考えられる。

アニオンサイズを変化させることで高温相で の2量化、低温相での4量化の程度、および空 隙の体積が系統的に変化することが分かった。 当日はこれらのパラメータと転移温度(TMI)、ヒ ステリシス幅(ΔT_{MI})との関係を議論する。

Fig. 3 (a) Donor arrangement of 1 at 110 K. (b) Schematic drawing of charge and bond pattern. (c) Temperature dependence of the degree of tetramerization for 1 (\bigcirc), 2 (\triangle), and 3 (\square), respectively.

Fig. 4 Plot of $(V/Z - V_a)$ versus V_a at 300 K (\bigcirc) and 150 K (\blacktriangle), respectively.

【参考文献】

- [2] M. Chollet *et al.*, *Science*, **2005**, 307, 86.
- [3] 添田ら, 分子構造総合討論会 2004, 4P003.
- 131, 39.